Chứng minh rằng :
Trong 4 số tự nhiên bất kì bao giờ cũng có ít nhất 2 số có hiệu chia hết cho 3
Chứng minh rằng trong 4 số tự nhiên bất kì bao giờ cũng có ít nhất 2 số có hiệu chia hết cho 3
Các số tự nhiên khi chia cho 3 chỉ có thể dư 0,1 hoặc 2.
Áp dụng nguyên lý Đi-rích-lê, ta có:
Trong 4 số tự nhiên bất kỳ bao giờ cũng sẽ có 2 số cùng số dư khi chia cho 3, do đó hiệu của chúng sẽ chia hết cho 3.
chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng tồn tại ít nhất 2 số có hiệu chia hết cho 10
chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng tồn tai ít nhất 2 số có hiệu chia hết cho10
Gọi 11 số tự nhiên liên tiếp lần lượt là:
\(a;a+1;a+2;a+3;...;a+10\)
Ta nhận thấy rõ ràng có 1 cặp số có hiệu chia hết cho 10. Đó chính là
\(a+10-a=10⋮10\)(đpcm)
Mik làm 11 số liên tiếp mà số cuối cộng 10 để chứng minh rằng có ít nhất 2 số có hiệu chia hết cho 10
gọi 11 số tự nhiên liên tiếp lần lượt là :
a:a+1:a+2:a+3:....:a+10
ta nhận thấy rõ ràng có 1 cặp số có hiệu chia hết cho 10 . đó chính là :
a + 10 - a = 10 \(⋮\) 10 ( đpcm)
Chứng minh rằng trong 4 số tự nhiên bất kì bao giờ cũng có 2 số có hiệu chia hết cho 3
Các số tự nhiên khi chia cho 3 chỉ có thể dư 0,1 hoặc 2.
Áp dụng nguyên lý Đi-rích-lê, ta có:
Trong 4 số tự nhiên bất kỳ bao giờ cũng sẽ có 2 số cùng số dư khi chia cho 3, do đó hiệu của chúng sẽ chia hết cho 3.
p/s: Nếu ko biết nguyên lý Đi-rích-lê, bạn có thể search google để biết thêm kiến thức.
chứng tỏ rằng
a , trong 3 số tự nhiên bất kì bao giờ cũng chọn được 2 số có hiệu chia hết cho 2
b , trong 6 số tự nhiên bất kì bao giờ cũng chọn được 2 số có hiệu chia hết cho 5
a) Khi chia 1 số tự nhiên cho 2, số dư có thể là 0 hoặc 1
=> Khi chia 3 số tự nhiên bất kì cho 2 số dư bằng một trong hai số 0; 1.
=> 2 trong 3 số đó có cùng số dư => Hiệu của 2 số chia hết cho 2
b) Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4
=> Khi chia 6 số tự nhiên bất kì cho 5, số dư bằng1 trong 5 số 0; 1; 2; 3; 4.
=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư
=> Hiệu của chúng chia hết cho 5
Vậy...
chứng minh rằng trong 3 số tự nhiên liên tiếp bất kì bao giờ cũng chọn được hai số có hiệu chia hết cho 2
Gọi 3 số cần tìm là a;a+1;a+2
Dễ thấy rằng;
a+2-a=2 chia hết cho 2
Vậy.....................................................
Chứng minh rằng trong 5 số tự nhiên bất kì bao giờ cũng có thể chọn ra 2 số mà hiệu của chúng chia hết cho 4
Dùng nguyên lí Dirichle bạn ạ
Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3
Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4
=> hiệu 2 số này chia hết cho 4
chứng minh rằng
a, trong 11 số tự nhiên bất kì bao giờ cũng tồn tại ít nhất 2 số có hiệu chia hết cho 10
b, cho dãy số a1,a2,a3,...........a2015 chứng mnh luôn tồn tại hai số có hiệu chia hết cho 2014
chứng minh rằng : trong 4 số tự nhiên tùy ý bao giờ cũng có ít nhất hai số có hiệu chia hết cho 3
Có 4 số tự nhiên mà chỉ có 3 số dư (0 ; 1 ; 2) khi chia cho 3
Theo nguyên lý Đỉíchlê => tồn tại hai số có cùng số dư khi chia cho 3 => hiệu hai số đó chia hết cho 3 (đpcm)