Những câu hỏi liên quan
LT
Xem chi tiết
LT
2 tháng 11 2015 lúc 15:11

Chứng minh : p + q chia hết cho 4
Từ bài suy ra p,q phải là 2 số lẻ liên tiếp nên p,q sẽ có dạng 4k + 1 và 4k + 3 \(\Rightarrow p+q\) chia hết cho 4
Vì p,q là số nguyên tố lớn hơn 3 nên p,q chỉ có thể chia 3 dư 1 hoặc 2
p = 3k + 1 \(\Rightarrow q=3k+3\)
Nên p + q chia hết cho 3
\(\Rightarrow\)p + q chia hết cho 12

Bình luận (0)
BP
Xem chi tiết
HK
Xem chi tiết
TA
Xem chi tiết
NN
Xem chi tiết
TB
Xem chi tiết
HD
Xem chi tiết
H24
25 tháng 12 2015 lúc 22:04

vi q la so nguyen to >3 nen se co dang 3k+1 va 3k+2 (k thuoc N*)

neu q=3k+1 thi p=3k+3 nen p chia het cho 3 (loai)

khi q=3k+2 thi p=3k+4

q la so nguyen to >3 nen k la so le

ta co p+q=6(k+1) chia het cho 12

Bình luận (0)
NN
Xem chi tiết
NH
30 tháng 10 2023 lúc 9:50

 Để olm giúp em, em nhé! 

Vì q là số nguyên tố lớn hơn 3 nên q có dạng:

         q = 3n + 1 (n là số tự nhiên chẵn vì nếu n lẻ thì q là hợp số loại)

hoặc q = 3n + 2 (n là số tự nhiên lẻ vì nếu n chẵn thì q là hợp số loại)

Xét q = 3n + 1 ta có: p = 3n + 1 + 2 = 3n + 3 ⋮ 3 (loại)

Vậy q có dạng: q = 3n + 2 ⇒ p = 3n + 2 + 2 = 3n + 4

Theo bài ra ta có:

p + q = 3n + 2 + 3n + 4

p + q= 6n + 6 (n là số tự nhiên lẻ)

p + q = 6.(n+1)

Vì n là số lẻ nên n + 1⋮ 2; 6 ⋮ 6 ⇒ p + q ⋮ 12 (đpcm)

 

Bình luận (0)
LM
Xem chi tiết