Những câu hỏi liên quan
AT
Xem chi tiết
H24
Xem chi tiết
NY
Xem chi tiết
DT
15 tháng 10 2015 lúc 11:44

 giả sử a<b

ƯCLN(a,b) = 32 a = 32.a' và b = 32.b' (UCLN(a',b') = 1 và a'<b')

a.b = 6144 32.a'.32.b' = 6144 a'.b' = 6

a' = 1 b' = 6

a' = 2 b' = 3

Vậy: a = 32 và b = 192 hoặc a = 64 và b = 96

Bình luận (0)
DT
Xem chi tiết
DH
Xem chi tiết
VT
Xem chi tiết
SN
6 tháng 9 2015 lúc 19:36

ƯCLN(a;b)=32=>a=32k;b=32y                   (x;y)=1

=>32x.32y=6144

=>xy=6

=>(x;y)=(2;3);(3;2);(1;6);(6;1)

=>(a;b)=(64;96);(96;64);(32;192);(192;32)

vậy (a;b)=(64;96);(96;64);(32;192);(192;32)

Bình luận (0)
NH
6 tháng 9 2015 lúc 19:34

vào câu hỏi tương tự

tick nha 

Bình luận (0)
H24
27 tháng 11 2018 lúc 12:55

a,b=(64,96);(96,64);(32,192);(192,32)

Bình luận (0)
NH
Xem chi tiết
LP
15 tháng 6 2023 lúc 11:39

Đặt \(gcd\left(a,b\right)=d\) và \(lcm\left(a,b\right)=m\) \(\left(d,m\inℕ^∗\right)\). Điều kiện đã cho tương đương \(d+m+a+b=ab\) \(\Leftrightarrow\dfrac{d}{ab}+\dfrac{m}{ab}+\dfrac{1}{a}+\dfrac{1}{b}=1\)   (1)

 Ta lại có \(dm=ab\) (mình sẽ chứng minh cái này sau) nên từ (1) ta có \(\dfrac{1}{m}+\dfrac{1}{d}+\dfrac{1}{a}+\dfrac{1}{b}=1\)     (2).

Do \(d\le b\le a\le m\) nên \(\dfrac{1}{m}\le\dfrac{1}{a}\le\dfrac{1}{b}\le\dfrac{1}{d}\). Kết hợp với (2), ta được \(1=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{d}\le\dfrac{4}{d}\) \(\Leftrightarrow d\le4\) hay \(d\in\left\{1,2,3,4\right\}\).

 Nếu \(d=1\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=0\), vô lí.

 Nếu \(d=2\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2}\), khi đó \(\dfrac{1}{2}=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}\le\dfrac{3}{b}\) nên \(b\le6\) hay \(b\in\left\{1,2,3,4,5;6\right\}\). Dĩ nhiên \(b\) không thể là số lẻ do \(d=2\) là ước của b. Vậy thì \(b\in\left\{2,4,6\right\}\). Nếu \(b=2\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=0\), vô lí. Nếu \(b=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{4}\le\dfrac{2}{a}\Leftrightarrow a\le8\) hay \(a\in\left\{1,2,3,4,5,6,7,8\right\}\). Do a cũng là số chẵn nên \(a\in\left\{2,4,6,8\right\}\), mà \(a\ge b\) nên suy ra \(b\in\left\{4,6,8\right\}\). Có \(b=4\) và \(b=6\) thỏa mãn. Nếu \(b=8\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{3}{8}\le\dfrac{2}{a}\Leftrightarrow a\le\dfrac{16}{3}\Leftrightarrow a\le5\), mà \(a\ge b\) nên vô lí

 Nếu \(d=3\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}\le\dfrac{3}{b}\) \(\Leftrightarrow b\le\dfrac{9}{2}\Leftrightarrow b\le4\) hay \(b\in\left\{1,2,3,4\right\}\). Mà \(b⋮3\) nên \(b=3\). Khi đó \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{3}\le\dfrac{2}{a}\Leftrightarrow a\le6\) Nhưng vì \(a⋮3\) nên \(a\in\left\{3,6\right\}\). Nếu \(a=3\) thì thử lại không thỏa mãn. Nếu \(a=6\) thì thỏa mãn.

 Nếu \(d=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\le\dfrac{3}{b}\) hay \(b\le4\). Mà \(b⋮4\) nên \(b=4\), từ đó suy ra \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{2}\le\dfrac{2}{a}\Leftrightarrow a\le4\), vì \(a⋮4\)  nên \(a=4\).

 Vậy ta tìm được các cặp số (4;4); (4;6); (6;3) thỏa ycbt.

 (*) Như mình đã hứa, mình sẽ chứng minh \(gcd\left(a,b\right).lcm\left(a,b\right)=ab\):

 Ta biết rằng 1 số tự nhiên N khác 0 bất kì có thể viết được dưới dạng \(N=p_1^{a_1}.p_2^{a_2}...p_n^{a_n}\) với \(p_i\left(i=\overline{1,n}\right)\) là các số nguyên tố đôi một phân biệt còn \(a_i\left(i=\overline{1,n}\right)\) là các số tự nhiên. 

 Trở lại bài toán, ta đặt \(a=p_1^{m_1}.p_2^{m_2}...p_k^{m_k}\) và \(b=p_1^{n_1}.p_2^{n_2}...p_k^{n_k}\). Khi đó, rõ ràng \(gcd\left(a,b\right)=p_1^{min\left\{m_1,n_1\right\}}.p_2^{min\left\{m_2,n_2\right\}}...p_k^{min\left\{m_k,n_k\right\}}\) và \(lcm\left(a,b\right)=p_1^{max\left\{m_1,n_1\right\}}.p_2^{max\left\{m_2,n_2\right\}}...p_k^{max\left\{m_k,n_k\right\}}\). Do đó \(gcd\left(a,b\right).lcm\left(a,b\right)=\prod\limits^k_{i=1}p_i^{min\left\{m_i,n_i\right\}+max\left\{m_i,n_i\right\}}=\prod\limits^k_{i=1}p_i^{m_i+n_i}=ab\) (kí hiệu \(\prod\limits^k_{i=1}A_i=A_1A_2...A_k\)

, ta có đpcm

Bình luận (0)
NH
15 tháng 6 2023 lúc 8:29

giúp mik 

 

Bình luận (0)
H24
15 tháng 6 2023 lúc 8:40

giúp mình trả lời câu hỏi đi

 

 

Bình luận (0)
NB
Xem chi tiết
EK
Xem chi tiết
VL
21 tháng 12 2017 lúc 21:36

Theo bài ra ta có:

 a + b =256

 ƯCLN (a,b)=64

*Vì ƯCLN (a,b) =64   => a=64x   (x < y, ƯCLN (x,y ) = 1)

                                        b=64y

*Mà a + b = 256

=> 64x + 64y = 256

     64(x + y)   = 256 : 64

          x  + y    =  4

*Ta phải tìm hai số x,y thỏa mãn các điều kiện :

 x < y

UCLN (x,y) = 1

x + y =4

=>Với x=1 thì y=3

Lập bảng:

x=1

y=3

a=18 . 1 = 18 thuộc N

b=18 . 3 = 54 thuộc N

Vậy a=18,b=54.

Bình luận (0)