Chứng tỏ 13^n *2+7^n *5+26 không là số chính phương với n thuộc N
chứng minh 13^n *2 + 7^n *5 +26 không phải là số chính phương
với n nguyên dương
giúp mình với
ra xét các trường hợp của n đi rồi thử
chứng minh 13^n *2 + 7^n *5 +26 không phải là số chính phương
với n nguyên dương
giúp mình với
Chứng minh rằng \(13^n.2+7^n.5+26\) (n∈N) không là số chính phương
a) Cho A= 1+3+5+7+...+ ( 2n +1) Với n thuộc N
chứng tỏ rằng A là số chính phương.
b) Cho B= 2+4+6+8+...+2n Với n thuộc N
số B có thể là số chính phương không ?
a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)
=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=> A là số chính phương
b) B có số số hạng là : (2n-2):2+1= n (số)
=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)
=> B không là số chính phương.
A có số số hạng là:
(2n+1-1):2+1=n+1(số)
=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=>A là số chính phương
Chứng minh rằng \(13^n.2+7^n.5+26\)không thể là số chính phương với \(n\in N\)
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
chứng minh rằng :
a) S = 1 + 3 +5 +7 + ... + 2n - 1 với n thuộc N* là số chính phương .
b) S = 2 +4 +6 + ... + 2n với n thuộc N* không phải là số chính phương
Chứng tỏ rằng A là một số chính phương biết rằng A 1 3 5 7... 2n 1 với n thuộc N cho cách làm nữa nha
\(A_n=1+3+5+7+...+2n-1\)
\(A_1=1=1^2\)
\(A_2=1+3=2^2\)
Ta sẽ chứng minh \(A_n=n^2\).(1)
(1) đúng với \(n=1\).
Giả sử (1) đúng với \(n=k\ge1\)tức là \(A_k=k^2\).
Ta sẽ chứng minh (1) đúng với \(n=k+1\) tức là \(A_{k+1}=\left(k+1\right)^2\)
Thật vậy, ta có: \(A_{k+1}=1+3+5+...+2k-1+2\left(k+1\right)-1\)
\(=A_k+2\left(k+1\right)-1=k^2+2k+1=k^2+k+k+1=\left(k+1\right)^2\)
Ta có đpcm.
Vậy \(A_n=n^2\)là số chính phương.
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương