Rút gon biểu thức sau:
\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Rút gọn biểu thức:
\(A=\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(A=\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(=\left[a+\left(b+c\right)\right]^3+\left[a-\left(b+c\right)\right]^3-6a\left(b+c\right)^2\)
\(=a^3+3a^2\left(b+c\right)+3a\left(b+c\right)^2+\left(b+c\right)^3+a^3-3a^2\left(b+c\right)+3a\left(b+c\right)^2-\left(b+c\right)^3-6a\left(b+c\right)^2\)
\(=2a^3\)
Rút gọn biểu thức sau: \(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)+\left(c+a\right)\)
Rút gọn biểu thức sau: \(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Đặt x = a+b , y = b+c , z = c+a
Thì biểu thức trên trở thành \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy-3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Từ đó thay a,b,c vào rồi rút gọn :)
Rút gọn biểu thức\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Rút gọn: \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-6a\left(b+c\right)^2\)
Rút gọn: \(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
bạn tham khảo link này nhé:
https://olm.vn/hoi-dap/detail/101383958371.html
#hok tốt#
\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(=a^3+b^3+c^3+a^3-b^3-c^3-6a\left(b^2+c^2\right)\)
\(=\left(a^3+a^3\right)+\left(b^3-b^3\right) +\left(c^3-c^3\right)-6a\left(b^2+c^2\right)\)
\(=2a^3-6a\left(b^2+c^2\right)\)
\(=2a^2\cdot a-6a\left(b^2+c^2\right)\)
\(=a\left[2a^2-6\left(b^2+c^2\right)\right]\)
\(\text{Chắc là vậy !}\)
Link nè :
https://olm.vn/hoi-dap/detail/101383958371.html
k mk nhé mk hông giải nên mk cho bn link rùi nè
Rút gọn:
A=\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Ta có: A=(a+b+c)3+(a−b−c)3−6a(b+c)2
= a^3 + b^3 + c^3 + 3ab + 3ac + 3bc + a^3 + b^3 + c^3 - 3ab - 3ac + 3bc - 6a(b^2+2bc + c^2)
= a^3 + b^3 + c^3 + 3ab + 3ac + 3bc + a^3 + b^3 + c^3 - 3ab - 3ac + 3bc - 6ab^2 + 12abc+6ac^2
=2a^3 + 2b^3 + 2c^3 + 6a^2 + 12abc
Cậu dùng hằng đẳng thức nâng cao là ra. Nhớ tick mình nha,
Rút gon biểu thức sau
a) \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)\)
b) \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)
c) \(\left(3x+2\right)\left(4-6x+9x^2\right)-3x\left(3x-2\right)^2+12\left(-\frac{2}{3}-3x^2\right)\)
a) ( x - 5 )( 2x + 3 ) + 2x( 1 - x )
= 2x2 - 7x - 15 + 2x - 2x2
= -5x - 15
= -5( x + 3 )
b) ( 3x - 5 )2 - ( x + 5 )( 5 - x ) - 5/2( -2x )2
= 9x2 - 30x + 25 + ( x + 5 )( x - 5 ) - 5/2.4x2
= 9x2 - 30x + 25 + x2 - 25 - 10x2
= -30x
c) ( 3x + 2 )( 4 - 6x + 9x2 ) - 3x( 3x - 2 )2 + 12( -2/3 - 3x2 )
= ( 3x )3 + 23 - 3x( 9x2 - 12x + 4 ) - 8 - 36x2
= 27x3 + 8 - 27x3 + 36x2 - 12x - 8 - 36x2
= -12x
a, \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)=2x^2+3x-10x-15+2x-2x^2=-5x-15\)
b, \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)
\(=9x^2-30x+25-\left(5x-x^2+25-5x\right)-\frac{5}{2}\left(4x^2\right)\)
\(=-30x\)
Rút gọn:
A=\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
Đặt b+c=x ta được:
A=(a+x)3+(a-x)3-6a.x2
=a3+3a2x+3ax2+x3+a3-3a2x+3ax2-x3-6ax2
=2a3