Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LQ
Xem chi tiết
NT
2 tháng 9 2023 lúc 12:37

Bài 2 :

a) \(2^a+154=5^b\left(a;b\inℕ\right)\)

-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)

\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)

\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)

\(\Rightarrow\left(a;b\right)\in\varnothing\)

b) \(10^a+168=b^2\left(a;b\inℕ\right)\)

Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)

\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)

mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))

\(\Rightarrow\left(a;b\right)\in\varnothing\)

Bình luận (0)
NT
2 tháng 9 2023 lúc 12:54

Bài 3 :

a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)

Ta thấy :

\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))

\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)

mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))

\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)

mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)

\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)

\(\Rightarrow M\) không thể là số chính phương.

b) \(N=2004^{2004k}+2003\)

Ta thấy :

\(2004k=4.501k⋮4\)

mà \(2004\) có chữ số tận cùng là \(4\)

\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)

\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)

\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)

Bình luận (0)
NT
2 tháng 9 2023 lúc 13:15

Bài 4 :

a) \(5^5-5^4+5^3\)

\(=5^3.\left(5^2-5-1\right)\)

\(=5^3.19\) không chia hết cho 7 (bạn xem lại đề)

b) \(7^6+7^5-7^4\)

\(=7^4.\left(7^2+7-1\right)\)

\(=7^4.\left(49+7-1\right)\)

\(=7^4.55=7^4.11.5⋮11\)

\(\Rightarrow dpcm\)

c) \(1+2+2^2+2^3+...+2^{119}\)

\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\)

\(=7+2^3.7+...+2^{117}.7\)

\(=7.\left(1+2^3+...+2^{117}\right)⋮7\)

\(\Rightarrow dpcm\)

e) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

Ta thấy : \(3^n.10⋮10\)

Ta lại có : \(2^n\) có chữ số tận cùng là số chẵn

\(\Rightarrow2^n.5\) có chữ số tận cùng là số \(0\)

\(\Rightarrow2^n.5⋮10\)

Vậy \(3^n.10-2^n.5⋮10\left(dpcm\right)\)

Bình luận (0)
HA
Xem chi tiết
SG
18 tháng 7 2016 lúc 16:20

Ta có:

2337 = 2336 . 23 = (234)9 . 23 = (...1)9 . 23 = (...1) . 23 = (...3)

Bình luận (0)
ML
Xem chi tiết
ND
23 tháng 8 2023 lúc 0:27

Việt nói sai ở chỗ “Mà 9 lớn hơn 7 nên 23 938 399 lớn hơn 37 003 847”. Ta cần so sánh các chữ số theo hàng và theo thứ tự từ trái sang phải.

Sửa: 23 938 399 < 37 003 847 (do 2 < 3)

Bình luận (0)
CY
Xem chi tiết
ZI
5 tháng 6 2017 lúc 15:53

Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.

=>a)=...5

b)=...0.

c=...6

d=...1.

e)9^18=(9^2)^9=81^9=...1

Bình luận (0)
TM
Xem chi tiết
NT
17 tháng 2 2017 lúc 12:35

chữ số tận cùng là 0 đấy , thế này nhé:                                                                                                                                                             23!=1.2.3.4.........23=(1.2.3.4...........23).10.   Vì 10 nhân mấy cũng = 0 nên .....

Bình luận (0)
DT
17 tháng 2 2017 lúc 12:28

Chữ số cuối cùng của số 23 là 3

Bình luận (0)
PH
Xem chi tiết
ST
19 tháng 1 2017 lúc 20:32

\(4^{961}+23^{2005}-19^{1997}\)

\(=4^{960}.4+23^{2004}.23-19^{1996}.19\)

\(=\left(4^2\right)^{480}.4+\left(23^4\right)^{501}.23-\left(19^2\right)^{998}.19\)

\(=\overline{\left(...6\right)}^{480}.4+\overline{\left(...1\right)}^{501}.23-\overline{\left(...1\right)}^{998}.19\)

\(=\overline{\left(...6\right)}.4+\overline{\left(...1\right)}.23-\overline{\left(...1\right)}.19\)

\(=\overline{\left(...4\right)}+\overline{\left(...3\right)}-\overline{\left(...9\right)}\)

\(=\overline{\left(...7\right)}-\overline{\left(...9\right)}\)

\(=\overline{...8}\)

Bình luận (0)
NQ
19 tháng 1 2017 lúc 20:22

8 đó bạn

Bình luận (0)
PH
19 tháng 1 2017 lúc 20:24

Bạn giải giúp mình dzới

Bình luận (0)
PH
Xem chi tiết
NA
Xem chi tiết
NT
5 tháng 9 2023 lúc 20:36

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

Bình luận (0)
NA
Xem chi tiết
NH

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

Bình luận (0)
NH

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

Bình luận (0)
NH

            Bài 3:

A =4 x 4 x 4 x...x 4(2023 chữ số 4)

vì 2023 : 2 =  1011 dư 1

A = (4 x 4) x (4 x 4) x...x(4 x 4) x 4 có 1011 nhóm (4 x 4)

A = \(\overline{..6}\) x \(\overline{..6}\) x \(\overline{..6}\)  x 4

A = \(\overline{...6}\) x 4

A = \(\overline{...4}\) 

 

 

Bình luận (0)
AA
Xem chi tiết