Những câu hỏi liên quan
QD
Xem chi tiết
HC
Xem chi tiết
TT
9 tháng 7 2020 lúc 22:24

a) \(A=\frac{15^{16}+1}{15^{17}+1}\)\(B=\frac{15^{15}+1}{15^{16}+1}\)

ta có \(A=\frac{15^{16}}{15^{17}}\)\(B=\frac{15^{15}}{15^{16}}\)

ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau

mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B 

\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)

\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)

\(\Rightarrow A>B\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
16 tháng 7 2020 lúc 10:24

\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)

+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)

\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)

Vậy A<B

b)Đề sai

Chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
QD
Xem chi tiết
QD
3 tháng 4 2016 lúc 21:40

co ai tra loi ko

Bình luận (0)
H24
Xem chi tiết
LN
Xem chi tiết
TN
2 tháng 2 2017 lúc 14:43

vì A và B đều có 1 nên ta bỏ 1 đi

Ta có : 100^100-100^99=9000......00000( tổng cộng có 198 số 0)

\(\frac{1}{100^{98}}=\frac{100}{100^{99}}\)nên \(\frac{1}{100^{99}}-\frac{1}{100^{98}}=\frac{-99}{100^{99}}\)

nhưng 900....000( 198 số 0) lớn hơn \(\frac{-99}{100^{99}}\)

=>A>B

Bình luận (0)
H24
Xem chi tiết
H24
5 tháng 6 2021 lúc 9:55

`A=3/4+8/9+.............+9999/10000`

`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`

`=99-(1/4+1/9+.........+1/10000)<99-0=99`

`=>A<99`

Bình luận (3)
H24
5 tháng 6 2021 lúc 10:40

 địt mẹ con ngu t khinh

Bình luận (4)

Giải:

\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{9999}{10000}\) 

\(A=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{8}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{10000}\right)\) 

\(A=99-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{19}+...+\dfrac{1}{10000}\right)< 99\) 

\(\Rightarrow A< 99\left(đpcm\right)\) 

Chúc bạn học tốt!

Bình luận (1)
NT
Xem chi tiết
NT
18 tháng 10 2023 lúc 13:51

\(A=\dfrac{14^{14}+1}{14^{15}+1}\)

\(\Rightarrow14.A=\dfrac{14^{15}+14}{14^{15}+1}\)

\(\Rightarrow14.A=\dfrac{14^{15}+1}{14^{15}+1}+\dfrac{13}{14^{15}+1}\)

\(\Rightarrow14.A=1+\dfrac{13}{14^{15}+1}\)

 

\(B=\dfrac{14^{15}+1}{14^{16}+1}\)

\(\Rightarrow14.B=\dfrac{14^{16}+14}{14^{16}+1}\)

\(\Rightarrow14.B=\dfrac{14^{16}+1}{14^{16}+1}+\dfrac{13}{14^{16}+1}\)

\(\Rightarrow14.B=1+\dfrac{13}{14^{16}+1}\)

Nhận xét: \(\dfrac{13}{14^{15}+1}>\dfrac{13}{14^{16}+1}\) (cùng tử, xét mẫu)

\(\Rightarrow A>B\)

Vậy \(A>B\)

Bình luận (0)
HG
Xem chi tiết
NT
29 tháng 4 2017 lúc 20:41

C>1   vì c>1

Bình luận (0)
ST
29 tháng 4 2017 lúc 21:01

a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)

Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)

\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)

Vậy A > 1/2

b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

Vậy B > 1/2

c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)

Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)

Vậy C > 1

Bình luận (0)
LA
8 tháng 2 2019 lúc 10:14

Tớ đồng ý,bạn làm đúng rồi .......

Bình luận (0)
NM
Xem chi tiết