Những câu hỏi liên quan
VD
Xem chi tiết
CN
9 tháng 6 2019 lúc 9:13

Vì p là SNT lớn hơn 3 => p có dạng 3k + 1 hoặc 3k + 2 ( k\(\in\)N*)

+Xét TH1 : p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k+1)

Thấy : 3( k + 1) \(⋮\)3

           3(k + 1) > 3                => p + 2 là hợp số ( loại)

Vậy p = 3k + 2 thì p + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1)

Thấy 3(k + 1)\(⋮\)3 => p + 1 \(⋮\)3 => p + 1 \(⋮\)

Mà 2 , 3 là 2 số nguyên tố cùng nhau => p + 1 \(⋮\)2.3 => p + 1 \(⋮\)6 ( đpcm)

Bình luận (0)
TN
9 tháng 6 2019 lúc 9:28

Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1 hay 3k + 2 (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3(k+1) là số nguyên tố. Vì 3(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (dễ dàng thấy p+2=3k+2+2=3k+4 là 1 số nguyên tố)

=> p+1=3k+2+1=3k+3=3(k+1) chia hết cho 3

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2;3)=1 nên p+1 sẽ chia hết cho 6.

Bình luận (0)
H24
9 tháng 6 2019 lúc 9:34

#)Giải :

Vì p là số nguyên tố lớn hơn 3 

=> p không chia hết cho 3 

=> p = 3k + 1 ; 3k + 2 

Ta xét p = 3k + 1 => p + 2 = 3k + 3 = 3( k + 1 ) chia hết cho 3 

=> p + 2 là hợp số ( vô lí ) 

=> p = 3k + 2 

=> p + 1 = 3k + 3 = 3( k + 1 ) 

Vì p là số nguyên tố lớn hơn 3 

=> p là số lẻ 

=> p + 1 là số chẵn 

=> p + 1 chia hết cho 2 

Vì ( 3;2 ) = 1 => p + 1 chia hết cho 6 ( đpcm )

Bình luận (0)
NH
Xem chi tiết
KJ
14 tháng 12 2021 lúc 14:17

Cách 1:

p là số nguyên tố, p>3 => p không chia hết cho 3 (1)

p+2 là số nguyên tố, p+2>5>3 => p+2 không chia hết cho 3 (2)

Ta có: p(p+1)(p+2) là tích 3 số tự nhiên liên tiếp => p(p+1)(p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => p+1 chia hết cho 3 (*)

Ta lại có: p là số nguyên tố, p>3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (**)

Mà (2;3)=1 (***)

Từ (*),(**),(***) => p+1 chia hết cho 6.

Cách 2:

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Bình luận (0)
HT
Xem chi tiết
DV
28 tháng 6 2015 lúc 16:17

p là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2

- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.

- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.

 => đpcm

  tick đúng cho tớ với !

Bình luận (0)
H24
17 tháng 12 2015 lúc 22:03

Tp là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2

- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.

- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.

 => đpcm

  tick đúng cho tớ với !

Bình luận (0)
H24
Xem chi tiết
06
Xem chi tiết
NA
25 tháng 11 2021 lúc 10:12

5

Bình luận (0)
H24
25 tháng 11 2021 lúc 10:13

5

Bình luận (0)
NT
25 tháng 11 2021 lúc 10:14

5

Bình luận (0)
NL
Xem chi tiết
H24
17 tháng 12 2015 lúc 22:03

Tp là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2

- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.

- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.

 => đpcm

  tick đúng cho tớ với !

Bình luận (0)
PM
17 tháng 12 2015 lúc 22:07

vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 và p lẻ
Nếu p có dạng p=3k+1 => p+2=3(k+1) là hợp số -> Loại
vậy p có dạng 3k+2
=> p+1=3(k+1) chia hết cho 3
vì p lẻ nên p+1 chẵn => p+1 chia hết cho 2
=> p chia hết cho 6

Bình luận (0)
TN
Xem chi tiết
TL
5 tháng 3 2020 lúc 19:58

Cách 1:

p là số nguyên tố, p>3 => p không chia hết cho 3 (1)

p+2 là số nguyên tố, p+2>5>3 => p+2 không chia hết cho 3 (2)

Ta có: p(p+1)(p+2) là tích 3 số tự nhiên liên tiếp => p(p+1)(p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => p+1 chia hết cho 3 (*)

Ta lại có: p là số nguyên tố, p>3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (**)

Mà (2;3)=1 (***)

Từ (*),(**),(***) => p+1 chia hết cho 6.

Bình luận (0)
 Khách vãng lai đã xóa
TL
5 tháng 3 2020 lúc 19:58

Cách 2:

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

Bình luận (0)
 Khách vãng lai đã xóa
H24
5 tháng 3 2020 lúc 19:58

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

# HOK TỐT #

Bình luận (0)
 Khách vãng lai đã xóa
YP
Xem chi tiết
NP
Xem chi tiết