Bài 1: Một STN A chia cho 4 dư 3; chia cho 5 dư 4 ; chia cho 6 dư 5.Tìm số A biết : 200 bé hơn hoặc bằng A; 400 lớn hơn hoặc bằng A
Bài 2: Ước chung lớn nhất của hai số là 45. Số lớn là 270, tìm số bé
Mn giải chi tiết giúp mk nhoa. Mk cảm ơn nhìu
Bài 1 : Chứng minh rằng số gồm 27 chữ số 1 thì chia hết cho 27.
Bài 2 : Cho A = 13! - 11!
A có chia hết cho 2 ; cho 5 và cho 155 hay không ?
Bài 3 : Tìm các STN chia cho 4 thì dư 1 , chia cho 25 thì dư 3.
Bài 4 : Tìm các STN chia cho 8 thì dư 3 , chia cho 125 thì dư 12.
Đặt A = 1111....1111 (27 chữ số 1)
A=111...100...0( 9 c/s 1 và 18 c/s 0) +111...100...0(9c/s 1 và 9 c/s 0) + 111...1(9 c/s 1)
= 111...1 . 1018 + 111...1 . 109 + 111...1
= 111...1 .(1018 + 109 + 1)
Vì 111...1 có 9 c/s 1 nên tổng các c/s chia hết cho 9 \(\Rightarrow111...1⋮9\)
và (1018 + 109 + 1) chia hết cho 3 ( có tổng các c/s chia hết cho 3)
nên A= 9.k.3.k'=27.k.k' chia hết cho 27 (đpcm)
Bài 1:
Khi a chia cho 7 dư 2; b chia cho 7 dư 3. Hỏi (a+b) chia cho 7 dư mấy?
Bài 2:
Một STN a chia hết cho 3 và STN b chia cho 3 dư r. Tìm số dư (a+b) chia cho 3
Bài 1;CMR
a)(a+a^1+a^2+.................+a^30)chia hết (a+1) vs a thuộc n
b)15/460+15/598+15/754+...............+15/6160 <1
c)1/2-1/4+1/8-1/16+1/32-1/64<1/3
d)1/3-2/3^2+3/3^3-3/4^4+.............+99/3^99-100/3^3 <3/16
Bài 2:
a)một STN chia cho 120 dư 58<chia cho 135 dư 88.Tìm a, biết a bé nhất
b)Tìm STN n và chữ số a biết rằng :
1+2+3+............+n=aaa
c)Một số chia hết cho 4dư 3,chia cho 17 dư 9 , chia cho 19 dư 13.Hỏi số đó chia cho 1292 dư bao nhiêu
Bài 1: Tìm x,y nguyên tố biết 59.x+46.y=2004
Bài 2: Một STN chi cho 4 dư 3,chia 17 dư 9,chia 19 dư 3. Hỏi số đó chia 1292 dư mấy?
Bài 2:
Ta có:
$59x=2004-46y=2(1002-23y)\vdots 2$
$\Rightarrow x\vdots 2$. Mà $x$ là số nguyên tố nên $x=2$
Khi đó:
$59.2+46y=2004$
$\Rightarrow y=\frac{2004-59.2}{46}=41$ (thỏa mãn)
Lời giải:
Gọi số cần tìm là $a$. Vì $a$ chia 19 dư 3, chia 4 dư 3 nên $a-3\vdots 19;4$
$\Rightarrow a-3=BC(19,4)\vdots BCNN(19,4)$ hay $a-3\vdots 76$
Đặt $a=76k+3$ với $k$ tự nhiên.
Vì $a$ chia 17 dư 9 nên:
$a-9\vdots 17$
$\Rightarrow 76k-6\vdots 17$
$\Rightarrow 76k-6-17.4k\vdots 17$
$\Rightarrow 8k-6\vdots 17$
$\Rightarrow 8k-6-34\vdots 17$
$\Rightarrow 8k-40\vdots 17$
$\Rightarrow 8(k-5)\vdots 17$
$\Rightarrow k-5\vdots 17$
$\Rightarrow k=17m+5$ với $m$ tự nhiên.
Khi đó:
$a=76k+3=76(17m+5)+3=1292m+383$
Vậy $a$ chia $1292$ dư $383$
Bài 2 Tìm STN có 3 chữ số lớn nhấy ma khi chia số đó
cho 4 dư 3,chia 5 dư 4 ,chia 6 dư 5
b) Tìm STN nhỏ hơn 400 ma khi chia số đó cho 2,3,4,5,6 đều dư 1 và khi chia cho 7 thì không dư
Bài 1:
a,CTR tổng A = 2 + 22 + 23 + ... + 299 + 2100 chia hết cho 3 .
b,Tìm số dư khi chia A cho 7 .
Bài 2: Chia STN a cho 7 dư 4
Chia STN b cho 7 dư 3
Chia STN c cho 7 dư 1 .
a, CTR a + 5 chia hết cho 7
b,Tìm số dư khi chia b + c cho 7 .
Ai nhanh và đug mik tick cho !!!
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
1, Khi chia một STN a cho 4, ta được số dư là 3 còn khi chia cho 9 ta được số dư là 5. Tìm số dư trong phép chia a cho 36
2, Khi chia một STN a cho một STN b ta được thương là 18 số dư là 24. Hỏi thương và số dư thay đổi thế nào thì SBC và SC giảm đi 6 lần
3, Tìm số dư trong phép chia sau:
\(a,2^{1000}:5\)
\(b,2^{1000}:25\)
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
Bài 3:
\(a,2^{1000}\div5\)
Ta có:
\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)
Vì a có tận cùng là 6
\(\Rightarrow2^{1000}\div5\) dư \(1\)
Bài 1: Tìm STN a biết a chia 3 dư 2, a chia 5 dư 3, a chia 11 dư 6 ( a<500)
Bài 2: Tìm BC nhỏ hơn 1000 của 60, 85, 90
Bài 3: Tìm x thuộc N biết a chia 3 dư 2 a chia 4 dư 3 và achia 17 dư 9 ( a có 3 chữ số )
Bài 5: Cho A = 1+4 + 42 +43 + 44 +....+449+450
tìm dư của phép chia A dư 5
Bài6: Cho S =1+5+52+53+...+548+549
chứng minh : S chia hết cho 6
Bài 1:
Theo đề ra ta có:
$a-2\vdots 3; a-3\vdots 5$
$a-2-2.3\vdots 3; a-3-5\vdots 5$
$\Rightarrow a-8\vdots 3; a-8\vdots 5$
$\Rightarrow a-8=BC(3,5)$
$\Rightarrow a-8\vdots 15$
$\Rightarrow a=15k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 6
$\Rightarrow a-6\vdots 11$
$\Rightarrow 15k+8-6\vdots 11$
$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$
$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$
$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$
$\Rightarrow k=11m+5$
Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.
Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$
$\Rightarrow m=0,1,2$
Nếu $m=0$ thì $a=165.0+83=83$
Nếu $m=1$ thì $a=165.1+83=248$
Nếu $m=2$ thì $a=165.2+83=413$
Bài 2:
$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$
$\Rightarrow a\vdots 3060$
Mà $a<1000$ nên $a=0$
Bài 3:
$a-2\vdots 3; a-3\vdots 4$
$\Rightarrow a+1\vdots 3$ và $a+1\vdots 4$
$\Rightarrow a+1=BC(3,4)$
$\Rightarrow a+1\vdots 12$
Lại có:
$a-9\vdots 17$ nên $a=17k+9$ với $k$ tự nhiên.
$a+1=17k+10\vdots 12$
$\Rightarrow 5k+10\vdots 12$
$\Rightarrow 5(k+2)\vdots 12$
$\Rightarrow k+2\vdots 12\Rightarrow k=12m-2$ với $m$ tự nhiên.
$\Rightarrow a=17k+9=17(12m-2)+9=204m-25$
$a$ có 3 chữ số
$\Rightarrow 100\leq a\leq 999$
$\Rightarrow 100\leq 204m-25\leq 999$
$\Rightarrow 0,61\leq m\leq 5,01$
$\Rightarrow m\in \left\{1; 2; 3;4; 5\right\}$
$\Rightarrow a\in \left\{179; 383; 587; 791; 995\right\}$
1.Chứng minh rằn 3 STN liên tiếp thì sẽ có một số chia hết cho 3
2.Chứng minh rằng 4 STN liên tiếp thì có một số chia hết cho 4
3. Chứng minh rằng Nếu hai STN liên tiếp chùng chia cho 5 và có cùng số dư thì thì hiệu của chúng chia hết cho 5
Chú ý là chữ số liên tiếp một chữ chia hết cho 3 nha chứ ko phải là tổng chia hết cho 3 (áp dụng với bài 4 nữa)
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5