Những câu hỏi liên quan
PC
Xem chi tiết
H24
2 tháng 4 2023 lúc 21:34

1+1=3 :)))

Bình luận (0)
PQ
Xem chi tiết
NM
20 tháng 8 2017 lúc 9:26

Ta có:

\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{n^2.\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(N+1\right)}=1+\frac{1}{n\left(n+1\right)}\)

\(=1+\frac{1}{n}-\frac{1}{n+1}\)

Thế vào bài toán ta được

\(S=1+1+...+1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)  

Bình luận (0)
TA
Xem chi tiết
DH
6 tháng 8 2017 lúc 16:12

Với mọi n thuộc N ta có :

\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+\frac{2}{n}-\frac{2}{n\left(n+1\right)}-\frac{2}{\left(n+1\right)}}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng ta được :

\(S=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)

Bình luận (0)
QM
Xem chi tiết
NP
Xem chi tiết
HG
7 tháng 8 2015 lúc 16:14

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

2S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

2S - S = \(1-\frac{1}{2^{100}}\)

=> S = \(1-\frac{1}{2^{100}}\)

Bình luận (0)
AM
7 tháng 8 2015 lúc 16:12

bài này làm theo công thức bạn nhé

Bình luận (0)
NN
20 tháng 6 2018 lúc 15:19

Phải nhân S với 1/2 chứ bạn

Bình luận (0)
TT
Xem chi tiết
PH
14 tháng 5 2017 lúc 9:13

S=\(3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(S=3\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\right)\)

\(S=3.\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{10100}\right)\)

\(S=\frac{3}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)

\(S=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(S=\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(S=\frac{3}{2}.\frac{100}{101}=\frac{150}{101}\)

Bình luận (0)
NA
14 tháng 5 2017 lúc 8:53

S = 3 + 1 + 1/2 +....

Bình luận (0)
VP
Xem chi tiết
TC
Xem chi tiết
TN
5 tháng 7 2017 lúc 17:20

tìm ở câu hỏi hay ấy :V

Bình luận (0)
PK
16 tháng 7 2017 lúc 14:32

câu này quen quen :)

Bình luận (0)
TC
27 tháng 8 2017 lúc 16:42

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Bình luận (0)
CD
Xem chi tiết
LP
3 tháng 9 2019 lúc 19:53

lolang

Bình luận (0)