Những câu hỏi liên quan
NT
Xem chi tiết
TT
29 tháng 10 2018 lúc 2:54

a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz

                  = x.(a+b+c) + y.(a+b+c) + z.(a+b+c)

                  = (a+b+c).(x+y+z) (1)

Lại có: a + b + c = -3 (2)

            x + y + z = -6 (3)

Từ (1) ; (2) ; (3) => A = -3.(-6) = 18

           Vậy A = 18

b) B = ax - bx - cx - ay + by + cy - az + bz +cz

       = x.(a-b-c) - y.(a-b-c) - z.(a-b-c)

       = (a-b-c).(x-y-z)

Lại có: a - b - c = 0 ; x - y - z = 2016

=> B = 0.2016 = 0

Vậy B = 0

Bình luận (0)
HB
Xem chi tiết
H24
Xem chi tiết
SN
21 tháng 7 2015 lúc 19:47

a=b

l-i-k-e cho mình nha

Bình luận (0)
TH
21 tháng 7 2015 lúc 19:47

a=b                                               

Bình luận (0)
HN
30 tháng 1 2018 lúc 21:08
a=b óc chó có zậy mà cug ko bit cl
Bình luận (0)
DA
Xem chi tiết
H24
19 tháng 11 2018 lúc 16:35

Ta có:

\(a^{2010}+b^{2010}+a^{2012}+b^{2012}\)

\(=\left(a^{2010}+a^{2012}\right)+\left(b^{2010}+b^{2012}\right)\ge2a^{2011}+2b^{2011}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a^{2010}=a^{2012}\\b^{2010}=b^{2012}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

\(\Rightarrow a^{2013}+b^{2013}=2\)

Vậy \(S=2\)

Bình luận (0)
DA
21 tháng 11 2018 lúc 22:22

thank ban nha

Bình luận (0)
TX
Xem chi tiết
VG
18 tháng 8 2017 lúc 15:32

1) pp: biến đổi tương đương

ta có: VT= \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)

        = \(\left(ax\right)^2+\left(ay\right)^2+\left(az\right)^2+\left(bx\right)^2+\left(by\right)^2+\left(bz\right)^2+\left(cx\right)^2+\left(cy\right)^2+\left(cz\right)^2\)     (*)

VP=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)

=\(\: \left(ax\right)^2+\left(by\right)^2+\left(cz\right)^2+2\left(axby+bycz+czax\right)+\left(bz\right)^2+\left(cy\right)^2+\left(cx\right)^2+\left(az\right)^2\)

\(+\left(ay\right)^2+\left(bx\right)^2-2\left(bzcy+cxaz+aybx\right)\)   (**)

Từ (*),(**)=> VT-VP=0=> VT=VP=> \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)   (đpcm)

Bình luận (0)
VG
18 tháng 8 2017 lúc 15:41

2) áp dụng BĐT Schwartz ta có: 

\(\left(a+b+c\right)^2\le\left(1+1+1\right)\left(a^2+b^2+c^2\right)\)

=>\(2010^2\le3\left(a^2+b^2+c^2\right)\)  (vì a+b+c=2010)

=>\(a^2+b^2+c^2\ge\frac{2010^2}{3}=1346700\)

Dấu '=' xảy ra khi: a=b=c

Vậy GTNN của a^2 +b^2 +c^2 là 1346700 khi a=b=c

Bình luận (0)
MT
Xem chi tiết
LN
8 tháng 8 2019 lúc 17:21

ở đây nha bn: https://hoc24.vn/hoi-dap/question/402510.html?pos=1029041

Bình luận (0)
PH
Xem chi tiết
H24
22 tháng 10 2020 lúc 20:25

Ta có: bx−cyabx−cya = cx−axbcx−azb = ay−bxcay−bxc

⇒ bx−cyabx−cya = a(bx−cy)a²a(bx−cy)a²  = abx−acya²abx-acya²

    cx−azbcx−axb = b(cx−az)b²b(cx−az)b² = bcx−baxb²bcx−baxb²

     ay−bxcay−bxc = c(ay−bx)c²c(ay−bx)c² = cay−cbxc²cay−cbxc²

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

bx−cyabx−cya = cx−azbcx−axb = cy−bxccy−bxc = abx−acy+bcx−bax+cay−cbxa²+b²+c²abx−acy+bcx−bax+cay−cbxa²+b²+c²  = 0

\(\Rightarrow\) bx - cy = 0

    cx - ax = 0

    ay - bx = 0

\(\Rightarrow\) bx = cy

    cx = ax

    ay = bx

\(\Rightarrow\) xcxc = ybyb 

    xaxa = xcxc 

    ybyb = xaxa 

\(\Rightarrow\) xaxa = ybyb = xcxc 

Bình luận (0)
 Khách vãng lai đã xóa
PH
23 tháng 10 2020 lúc 13:19

cyabx o dau vay

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
HL
7 tháng 3 2017 lúc 16:22

TA CÓ :

\(B=\frac{2010+2011+2012}{2011+2012+2013}\)

\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

=> A > B 

VẬY , A > B

Bình luận (0)
BT
7 tháng 3 2017 lúc 16:26

Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????

Bình luận (0)
HL
7 tháng 3 2017 lúc 16:37

CÁCH CỦA MÌNH LÀ HOÀN TOÀN ĐÚNG NHA !

Bình luận (0)
NH
Xem chi tiết