Mọi người ơi giúp em bài này vs
Tìm m để pt: x^2-4mx+2m=0 có 2 nghiệm tm x1<1<x2
Các bạn ơi giúp mình bài này nhé.
Cho pt x2+2(m-1)x-2m+5=0
Tìm m để a) pt (1) có 2 no x1,x2 tm x1/x2 + x2/x1=2
b) pt (1) có 2 no x1,x2 tm 2x1+3x2=5
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
Cho phương trình: \(x^2-2x+m-3=0\). Tìm giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện: x1\(x^2_1-2x_2+x1.x2=-12\)
Mọi người ơi, giúp em bài này với ạ, em cảm ơn rất nhiều ạ!!!
Lời giải:
Để pt có 2 nghiê pb thì:
$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)
\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)
\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
ai giúp mik bài này được không .cho pt: x2 -(2m-3)x + m2 - 3m =0 . tìm m để pt có 2 nghiệm x1, x2 thỏa mãn 1 < x1 < x2 < 6
xin lỗi đánh nhầm ta tìm được: 4 < m < 9 bạn nhé
Cho phương trình 2x^2 - 4mx + 2m^2 -1 =0
a) Chứng minh phương trình luôn có 2 nghiệm với mọi m
b) Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn:
2x1^2 + 4mx - 2m^2 + 1 > 0
Giúp mình câu b với
\(x^2-2\left(m+1\right)x+2m+3=0\)0
Tìm m để PT có 2 nghiệm x1 , x2 TM \(\left(x1-x2\right)^2=4\)
Giúp mình với huhu T^T
Vì phương trình có 2 nghiệm x1;x2
=> Theo vi-ét ta có
x1 + x2 = 2(m+1) và x1x2 = 2m+3
theo bài ra ta có
(x1 - x2)2 = 4
<=> x12 - 2x1x2 + x22 = 4
<=> x12 + 2x1x2 + x22 - 4x1x2 = 4
<=> (x1 + x2)2 - 4x1x2 = 4
<=> 4(m+1)2 - 4(2m+3) = 4
<=> (m+1)2 - (2m+3) = 1
<=> m2 + 2m +1 -2m -3 -1 = 0
<=> m2 - 3 = 0
<=> m2 = 3
<=> m\(=\pm\sqrt{3}\)
Vậy với m\(=\pm\sqrt{3}\) thì phương trình có hai nghiệm x1;x2 thỏa mãn (x1 - x2)2 = 4
Ai chưa ngủ hộ tui mấy bài này nhé, 1 thui cx đc :>>
1) Cho a,b thỏa mãn a+b>=2 . CM pt (x^2 + 2a^2b+b^5)(x^2+2ab^2+a^5)=0 luôn có nghiệm
2)Tìm m để pt 2x^2-4mx+2m^2-1=0 (với ẩn x,tham số m) có 2 nghiệm phân biệt x1,x2 thỏa mãn 2x1^2 + 4mx2+ 2m^2<2017
3) Cho a,b khác 0 thỏa mãn 1/a+1/b=1/2 chứng minh pt (x^2+ax+b)(x^2+bx+a)=0 luôn có nghiệm
Đề bài 1 có nhầm chỗ nào không bạn ???
Bài 3 :
( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)
\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)
\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)
Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)
<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b )
B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn
Vâng cj ,mai em làm 2 bài còn lại được ko ạ ???
Cho Pt x^2-4mx-2m =0 , có 2 nghiệm x1 và x2 , tìm Min của
P = m^2/(x1^2 + 4mx1 +6m ) +
(x1^2 +4mx2 +6m)/m^2
tìm m để phương trình (m2-1)x+2=m-1 nhận x-2 là nghiệm
Tìm m để pt 3x2+4mx=8 có nghiệm x=-1
Tìm m để pt (2m+3)x-5-(m+2)-x có nghiệm là x=3
Gig gấp vs các bạn !!!
Kiểm tra giúp mình yêu cầu thứ nhất nhé!
Có thể bạn tìm:
"Đề: Tìm m để phương trình (m2-1)x+2=m-1 nhận x=2 là nghiệm.
Giải: Thế x=2 vào phương trình đã cho, ta suy ra (m2-1).2+2=m-1 (vô nghiệm).
Không có giá trị nào của m để phương trình đã cho nhận x=2 là nghiệm. -Hết-".
Thế x=-1 vào phương trình đã cho, ta suy ra 3.(-1)2+4m.(-1)=8 \(\Rightarrow\) m=-5/4.
Bạn xem giúp mình yêu cầu cuối cùng nha!
Có thể bạn tìm:
"Đề: Tìm m để phương trình (2m+3)x-5=(m+2)-x có nghiệm là x=3.
Giải: Thế x=3 vào phương trình đã cho, ta suy ra (2m+3).3-5=(m+2)-3 \(\Rightarrow\) m=-1. -Hết-".