Những câu hỏi liên quan
H24
Xem chi tiết
TK
24 tháng 7 2021 lúc 19:25

\(x^2-4x+2y-xy+9=0\)

\(\Leftrightarrow x^2-4x+4+2y-xy+5=0\)

\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)y+5=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-y\right)=-5\)

\(\left[{}\begin{matrix}\left(x-2\right)\left(x-2-y\right)=-5\cdot1\left(1\right)\\\left(x-2\right)\left(x-2-y\right)=-1\cdot5\left(2\right)\end{matrix}\right.\)

Vì đề kêu tìm nghiệm nguyên nên ta có

Th1:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-5\\x-2-y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\x-2-y=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\end{matrix}\right.\)

Th2:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-1\\x-2-y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=5\\x-2-y=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\end{matrix}\right.\)

Vậy .....

Bình luận (0)
NQ
Xem chi tiết
QT
Xem chi tiết
TD
18 tháng 1 2019 lúc 19:10

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

 \Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

 \Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

Bình luận (0)
TD
18 tháng 1 2019 lúc 19:11

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3

Bình luận (0)
QT
18 tháng 1 2019 lúc 20:14

SKT_NTT câu b bạn làm rõ ra hơn có đc không

Bình luận (0)
KS
Xem chi tiết
EC
7 tháng 10 2020 lúc 22:10

b) x2y + x + xy2 + y + 2xy = 9

xy(x + y + 2) + (x + y + 2) = 11

<=> (xy + 1)(x + y + 2) = 11

Xét các TH

+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9

+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KG
Xem chi tiết
NM
15 tháng 8 2023 lúc 8:55

\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp

\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)

+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)

+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)

Bình luận (0)
DT
Xem chi tiết
QT
Xem chi tiết
LA
Xem chi tiết
HP
28 tháng 10 2016 lúc 11:34

chiu roi

ban oi

tk nhe

Bình luận (0)
TD
29 tháng 5 2020 lúc 18:51

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

Bình luận (0)
 Khách vãng lai đã xóa