A = \(\frac{3+\sqrt{x}}{\sqrt{x}}\)
Tìm X thuộc Z để A thuộc Z
Cho A=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm điều kiện để A có nghĩa
b) rút gon A
c) Tìm x thuộc Z để A thuộc Z
a) \(ĐKXĐ:x\ne4;x\ne9\)
b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 2 | \(\sqrt{2}\) | \(\sqrt{5}\) | \(\sqrt{1}\) | \(\sqrt{7}\) | \(\varnothing\) |
Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }
\(C=\left(1-\frac{1}{\sqrt{x}+2}\right):\left(\frac{4-x}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
a) Tìm x để C>0
b) Tìm x thuộc Z để C thuộc Z
Tìm x thuộc z để A=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)thuộc z
\(\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\in Z\Rightarrow\frac{2}{\sqrt{x}+1}\in Z\)
giả sử \(\sqrt{x}\)là số vô tỉ=>\(\sqrt{x}+1\)là số vô tỉ
=>\(\frac{2}{\sqrt{x}+1}\)là số vô tỉ(vô lí)
với \(\sqrt{x}\in Q\)=>\(\sqrt{x}\in Z\Rightarrow\sqrt{x}+1\in Z\)
mà \(\sqrt{x}+1\ge1\)
Vậy x=0;1 thì \(A\in Z\)
=>\(\sqrt{x}+1\in\left\{1;2\right\}\Rightarrow x\in\left\{0;1\right\}\)
Đặt \(\sqrt{x}=t\)
=> t \(\ge\) 0
\(\Rightarrow\)Để A thuộc Z thì:
\(\frac{t+3}{t+1}\in Z\)
\(=>\left(\frac{t+3}{t+1}-1\right)\in Z\)
\(\frac{2}{t+1}\in Z\)
=> \(2⋮\left(t+1\right)\Rightarrow\left(t+1\right)\inƯ\left(2\right)\)
\(\Rightarrow\left(t+1\right)\in\left\{2;-2;1;-1\right\}\)
=> \(t\in\left\{1;-3;0;-2\right\}\)
Vì \(t\ge0\)nên chỉ có t = 1; t = 0 là thoả mãn điều kiện của t
Vì \(t=\sqrt{x}\)nên :
\(x\in\left\{1;0\right\}\)
Vậy,\(x\in\left\{1;0\right\}\)
Cho A= \(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a, Rút gọn A
b, Tìm x thuộc Z để A thuộc Z
ĐKCĐ: \(x\ge0;x\ne9,x\ne4\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ \)
\(=\left(\frac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}-1\right):\left(\frac{\left(3-\sqrt{x}\right).\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x+3}\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=-\frac{3}{\sqrt{x}+3}:\left(-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)=-\frac{3}{\sqrt{x}+3}:\frac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}=\frac{3}{\sqrt{x}-2}\)
b, \(A\inℤ\Leftrightarrow\frac{3}{\sqrt{x}-2}\inℤ\)
Nếu x không là số chính phương thì \(\sqrt{x}\)là số vô tỉ thì \(\sqrt{x}-2\)là số vô tỉ\(\Rightarrow A=\frac{3}{\sqrt{x}-2}\)là số vô tỉ
Nếu x là số chính phương thì \(\sqrt{x}\)là số nguyên thì \(\sqrt{x}-2\inℤ\Rightarrow\sqrt{x}-2\inƯ\left(3\right)\Rightarrow\sqrt{x}-2\in\left\{\pm1;\pm3\right\}\Rightarrow\sqrt{x}\in\left\{1;3;5\right\}\)\(\Rightarrow x\in\left\{1;9;25\right\}\)
Mà theo ĐKXĐ có x khác 9 => \(x\in\left\{1,25\right\}\)
cho A = \(\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)ĐK: x > 0, x khác 9
a, rút gọn A
b, Tìm x thuộc Z để A thuộc Z
c, Tìm x để A >1/3
cho A = \(\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)ĐK: x > 0, x khác 9
a, rút gọn A
b, Tìm x thuộc Z để A thuộc Z
c, Tìm x để A >1/3
a) \(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\left[\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
c) để A>1/3
\(\Rightarrow\frac{\sqrt{x}+3-2}{\sqrt{x}+3}>\frac{1}{3}\)
\(\Rightarrow\frac{2}{\sqrt{x}+3}>\frac{2}{3}\)
\(\Rightarrow\sqrt{x}+3>3\)
\(\Rightarrow x>0\)
1. cho A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Tìm X thuộc Z để A thuộc Z
\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)= \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)= \(1-\frac{4}{\sqrt{x}-3}\)
Để A thuộc Z <=> \(1-\frac{4}{\sqrt{x}-3}\)thuộc Z
<=> \(\frac{4}{\sqrt{x}-3}\)thuộc Z
mà \(x\)thuộc Z =>\(\sqrt{x}-3\) thuộc ước của \(4\)
=> \(\sqrt{x}-3\)thuộc ( \(1,-1,2,-2,4,-4\) )
mà \(\sqrt{x}\) \(>0\)=> \(\sqrt{x}\)thuộc (\(4,2,5,1,7\))
=> \(x\)thuộc ( \(16,4,25,1,49\))
vậy.....
\(1-\frac{4}{\sqrt{x}-3}\) thành \(1+\frac{4}{\sqrt{x}-3}\)nha
Cho A= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Tìm x thuộc Z để A thuộc Z
A= \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{x-6\sqrt{5}+5}{2x+7\sqrt{x}-4}\)
a) Tìm TXĐ của A
b) Rút gọn A
c) Tìm x để A >\(\frac{1}{2}\)
d) Tìm x thuộc Z để A thuộc Z
đè hinh như là 6\(\sqrt{x}\) nhi bạn