Câu 1. Cho tam giác ABC có ·BAC =90 độ CMR··ABC;ACB khác 90 độ
Câu 2:CMR trong 1 tam giác chỉ có nhiều nhất 1 góc vuông
PS MIK CHƯA HOK TỔNG CÁC GÓC CỦA TAM GIÁC BÀNG 180 ĐỘ
Cho tam giác ABC có góc BAC= 90 độ. Kẻ AH vuông góc BC ( H thuộc BC). Kẻ HE vuông góc AC( E thuộc AC). CMR AB song song HE.Cho góc ABC=60 độ. Tính góc AHE, BAH.
Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)
Trong tam giác vuông BAH có \(\widehat{B}=60^o\); \(\widehat{BHA}=90^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
Do AB//HE
=> \(\widehat{BAH}=\widehat{AHE}=30^o\)
Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)
Trong tam giác vuông BAH có \widehat{B}=60^oB=60o; \widehat{BHA}=90^oBHA=90o
\Rightarrow\widehat{BAH}=30^o⇒BAH=30o
Do AB//HE
=> \widehat{BAH}=\widehat{AHE}=30^oBAH=AHE=30o
1) Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a)Tính số đo góc ABD?
b)Chứng minh : Tam giác ABC = Tam giác BAD.
c) So sánh AM và BC.
2) Cho tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. CMR: góc BAC = 90 độ.
cho tam giác ABC có BH vuông AC (H thuộc AC) Bh = 1/2 AC và góc BAC=75 độ cmr tam giác ABC cân tại C
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bạn tự vẽ hình nhé.
Dựng tam giác đều ABE sao cho điểm E nằm cùng phía với điểm C đối với đường thẳng AB.
Vì góc BAC = 750 > góc BAE =600 nên tia AE nằm giữa hai tia AB và AC.
Gọi K là trung điểm của AC suy ra AK = KC =BH (gt)
Vì góc BAC = 75 độ nên góc KAE = góc HBA = 15 độ.
Suy ra tam giác HAB = tam giác KEA (c-g-c)
Suy ra góc K = góc H =90 độ
Suy ra tam giác AEC cân tại E, suy ra góc ACE = 15 độ. Suy ra góc AEC = 150 độ.
Suy ra góc BEC = 150 độ (Vì = 360 độ - góc AEC -góc AEB =360 -150-60)
Suy ra tam giác AEC = tam giác BEC (c-g -c)
Suy ra góc BCE =15 độ suy ra góc ACB = 30 độ
Suy ra góc ABC = 75 độ suy ra tam giác ABC cân tại C suy ra AC = BC
Dựng tam giác đều ABE sao cho điểm E nằm cùng phía với điểm C đối với đường thẳng AB.
Vì góc BAC = 750 > góc BAE =600 nên tia AE nằm giữa hai tia AB và AC.
Gọi K là trung điểm của AC suy ra AK = KC =BH (gt)
Vì góc BAC = 75 độ nên góc KAE = góc HBA = 15 độ.
Suy ra tam giác HAB = tam giác KEA (c-g-c)
Suy ra góc K = góc H =90 độ
Suy ra tam giác AEC cân tại E, suy ra góc ACE = 15 độ. Suy ra góc AEC = 150 độ.
Suy ra góc BEC = 150 độ (Vì = 360 độ - góc AEC -góc AEB =360 -150-60)
Suy ra tam giác AEC = tam giác BEC (c-g -c)
Suy ra góc BCE =15 độ suy ra góc ACB = 30 độ
Suy ra góc ABC = 75 độ suy ra tam giác ABC cân tại C suy ra AC = BC
Cho tam giác ABC có góc BAC=60 độ và góc BAC< góc ABC .Trong tam giác ABC vẽ tia Bx sao cho góc CBx=60 độ. Trên tia Bx lấy điểm D sao cho BD=DC. CMR: AC=AB
Cho tam giác ABC có BAC=90 độ,ABC=54 độ,DBC=18 độ,D thuộc AC.CMR :BD<AC
cho tam giác ABC, có BH vuông AC tại H và BH=1/2 AC và góc BAC=75 độ. CMR: tam giác ABC cân tại C
1. Cho tam giác ABC có góc BAC lớn hơn hoặc bằng 90o. CMR AB + AC nhỏ hơn hoặc bằng \(\sqrt{2}.BC\)
2. Cho tam giác ABC có góc BAC lớn hơn hoặc bằng 120o. CMR AB + AC nhỏ hơn hoặc bằng \(2.BC \over{\sqrt{3}}\)
1)cho tam giác abc có a=90 độ,ab=8cm,c=30 độ
a)giải tam giác abc
b)tính chu vi và diện tích tam giác abc
2)cho tam giác abc có b=32 độ,c=54 độ,ac=11cm
a)tính bac=?
b)tinhs ab=? bc=?
ai biết giúp mình với,please cảm ơn nhiều :))
Cho tam giác ABC nhọn có AB<AC; Góc BAC nhỏ hơn 90 độ. Đường trung trực của BC cắt tia phân giác góc BAC tại I. Kẻ ID vuông góc với AB tại D, IE vuông góc với AC tại E
a, CMR: Tam giác DBI= tam giác ECI
b, Tính tổng 2 góc ABI và góc ACI
hình tự vẽ nhé
đường trung trục của BC là HT cắt tia phân giác AK của góc A ở I .
Xét tam giác HIB và tam giác HIC ta có:
HB = HC ( HT là đường trung trực của BC)
HI chung
góc IHC= góc IHB = 90 độ
=> tam giác HIB = tam giác HIC (c.g.c)
=> IC = IB ( 2 cạnh tương ứng)
Xét tam giác AIE và tam giác AID ta có:
góc A1 = góc A2 ( AK là tia phân giác góc A)
AI là cạnh chung
=> tam giác AIE = tam giác AID ( cạnh huyền góc nhọn )
=> IE=ID (2 cạnh tương ứng)
theo định lý Py-ta-go ta có:
xét tam giác vuông EIC: IC2 - IE2 = EC2
xét tam giác vuông DIB: IB2 - ID2 = BD2
mà IC=IB , ID=IE => EC2=BD2 => EC=BD
xét tam giác DBI và tam giác ECI ta có:
DB=EC (CM trên)
IE=ID (CM trên)
IB=IC (CM trên)
suy ra tam giác DBI= tam giác ECI (ĐPCM)
=> góc ACI=góc DIB (2 góc tương ứng)
mà tổng 2 góc ABI và góc DIB = 90 độ
=> góc ABI + góc ACI = 90 dộ