Cho ba số nguyên liên tiếp x, y, z liên tiếp. Chứng minh rằng \(x^3+y^3+z^3\)chia hết cho 9
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1 :Chứng tỏ rằng tổng 3 số nguyên liên tiếp thì chia hết cho 3
Câu 2 : Biết tích của 3 số nguyên liên tiếp X, Y, Z = -10 thêm 3 vào X thì tích giảm đi 6 đơn vị . Tìm các số X , Y , Z
Bày cho mình cách làm luôn nhé!!!!!!!!!!!!!!!
cho M=x-y+z+2;N=x+3; M-N=1,chứng minh rằng y và z là 2 số nguyên liên tiếp
M-N=x-y+z+2-x-3=z-y-1=1
=>z-y=2
=>M=x+z-y+2=x+2+2=x+4
=>M;N là 2 số nguyên liên tiếp
=>đpcm
Cho các số nguyên dương chẵn x,y,z,t đồng thời thỏa x + z = y + t và xz = yt - 4. Chứng minh y = t và x,y,z là 3 số chẵn liên tiếp
Chứng minh rằng:
a) Tích của 3 số nguyên liên tiếp chia hết cho 3
b) Tích của 5 số nguyên liên tiếp chia hết cho 120
c) Tích của 3 số chẵn liên tiếp chia hết cho 48
a) 3 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right)\)
Ta có \(\Rightarrow n\left(n+1\right)\left(n+2\right)\) trong 3 số sẽ có 1 số chia hết cho 3
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\Rightarrow dpcm\)
b) 5 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right);\left(n+3\right);\left(n+4\right)\)
mà trong 5 số này có số chia hết cho 2;4;3;5 và 2.4=8
⇒ Tích 5 số này chia hết cho 3,5,8 \(\left[UCLN\left(3;5;8\right)=1\right]\)
⇒ Tích 5 số này chia hết cho tích của 3,5,8
mà \(3.5.8=120\)
\(\Rightarrow dpcm\)
c) 3 số chẵn liên tiếp là \(2n;2n+2;2n+4\)
Ta có \(2n\left(2n+2\right)\left(2n+4\right)\)
\(=2.2.2n\left(n+1\right)\left(n+2\right)\)
\(=8n\left(n+1\right)\left(n+2\right)⋮8\left(1\right)\)
Ta lại có \(\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)⋮3\\n\left(n+1\right)⋮2\end{matrix}\right.\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow8n\left(n+1\right)\left(n+2\right)⋮48\)
\(\Rightarrow dpcm\)
chứng minh rằng 3 số tự nhiên và 3 số nguyên liên tiếp chia hết cho 6
chứng minh rằng 5 số tự nhiên và 5 số nguyên liên tiếp chia hết cho 120
Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?
Chứng minh rằng:
a) Tổng của ba số nguyên liên tiếp thì chia hết cho 3
b) Tổng của 5 số nguyên liên tiếp thì chia hết cho 5
a) Gọi 3 số đó là: a;a+1;a+2.
Ta có: a+a+1+a+2= a+a+a+3
= a.3+3
Vì a.3 chia hết cho 3 và 3 chia hết cho 3.
=> Tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b) Gọi 5 số đó là: a;a+1;a+2;a+3;a+4
Ta có: a+a+1+a+2+a+3+a+4= a.5+10
= a.5+5.2= 5.(a+2)
=> Tổng 5 số nguyên liên tiếp chia hết cho 5
Mình không nghĩ bạn học TH đâu
Bài 1 : Tìm các cặp số nguyên x,y thỏa mãn :
3x + 7 = y(x+2)
Bài 2 : Tìm giá trị nhỏ nhất của biểu thức sau :
a) A= I x-2 I + I y-5 I - 10 ( với \(x,y\in Z\))
b) B= ( x-8)2+ 2014
Bài 3 : Chứng minh rằng :
Tổng của 3 số nguyên liên tiếp thì chia hết cho 3 , còn tổng của 4 số nguyên liên tiếp thì chia hết cho 4
Các bạn làm câu nào thì tùy nhưng giúp mình nhanh nhé mai mik phải nộp rồi , cảm ơn các bạn trước
1/ Chứng minh rằng:
a) Tích hai số chẵn liên tiếp chia hết cho 8.
b) Tích ba số nguyên liên tiếp chia hết cho 6.
c) Tích năm số nguyên liên tiếp chia hết cho 120.
2/ Chứng minh rằng với mọi số nguyên m, n:
a) n3 + 11n chia hết cho 6.
b) mn (m2 - n2) chia hết cho 3.
c) n (n + 1) (2n + 1) chia hết cho 6.
3/ Cho m, n là hai số chính phương lẻ liên tiếp. Chứng minh rằng mn - m - n + 1 chia hết cho 192.
4/ Tích 3 số chẵn liên tiếp chia hết cho bao nhiêu?
5/ Cho p là số nguyên tố lớn hơn 3. Chứng minh: p2 - 1 chia hết cho 24.
6/ (HSG toàn quốc - 1970) Chứng minh rằng: n4 - 4n3 - 4n2 + 16n chia hết cho 3 với n là một số chẵn lớn hơn 4.
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.tích của 3 số nguyên liên tiếp chia hết cho 3.tích của 5 số nguyên liên tiếp chia hết cho 5.vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
(a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)12a chia hết cho 6.vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
sao dài yữ vậy trời???????????????????????????????????????
Chứng minh rằng tổng của 3 số nguyên liên tiếp chia hết cho 3. Tổng của 5 số nguyên liên tiếp cho 5
goi so nguyen do la x
.) ta co : x+x+1+x+2 =3x+3
=3(x+1) chia het cho 3
vay tong cua 3 so tu nhien lien thi chia het cho 3
.) ta co : x+x+1+x+2+x+4+x+5=5x+5
=5(5+1) chia het cho 5
gọi 3 số đó là a: a+1 a+2
ta có a+ a+1+ a+2=3a+3
3 chia hết cho 3
suy ra 3a chia hết cho 3
suy ra 3a+3 chia hết cho 3
syu ra tổng của 3 số nguyên liên tiếp chia hết cho 3
tương tự chia hết cho 5