Những câu hỏi liên quan
ML
Xem chi tiết
GC
16 tháng 5 2015 lúc 20:32

3S = 3 +3^2 +3^3+...+3^31 => 2S= 3^31-1 

                              3^31= [3^4]^7 x 3^3 = [...1] ^7 x 27  = [...1] x 27 = [...7] => 2S có tận cùng là 7-1 = 6

=> S có tc là 3 hoặc 8       mà scp ko có tc là 3 hoặc 8 => S ko phải là scp

Bình luận (0)
NN
10 tháng 9 2021 lúc 16:12

bạn giang hồ đại ca làm giỏi quá

Bình luận (0)
 Khách vãng lai đã xóa
NV
12 tháng 12 2021 lúc 16:32

CHO TUI HỎI CÂU Y HỆT THẾ

 

Bình luận (0)
TL
Xem chi tiết
BD
5 tháng 11 2016 lúc 8:42

Ta có :

1 + 31 + 32 + 33 + 34 ... + 330

= 1 + 31 +  2 + 3 + 4 .. + 30

= 1 + 3465

Tận cùng của 3465

cứ 5 chữ số 3 nhân với nhau thì có tận cùng là 3 . Vì 465 chia hết cho 5 nên tận cùng của 3465 là 3 

3 + 1 = 4 nên tận cùng của 1 + 3465 = 4 

Các đặc điểm của số chính phương :

Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.

Khi phân tích một số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)(a-b).Số ước nguyên dương của số chính phương là một số lẻ.Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...

S thỏa mãn các điều kiện trên nên S là số chính phương 

Bình luận (0)
AK
Xem chi tiết
DT
Xem chi tiết
TM
13 tháng 10 2017 lúc 13:03

Ta có : \(S=1+3+3^2+3^3+....+3^{30}\)

\(\Rightarrow3S=3+3^2+3^3+3^4+....+3^{31}\)

\(\Rightarrow2S=3^{31}-1\)

\(\Rightarrow2S=3^{4\cdot7+3}-1\)

\(\Rightarrow2S=81^7\cdot27-1\)

\(\Rightarrow2S=\)\(\overline{...1\cdot}27-1\)

\(\Rightarrow2S=\overline{...27}\)\(-1\)

\(\Rightarrow2S=\overline{...6}\)

\(\Rightarrow S=\overline{...3}\)Hay S ko là SCP

Bình luận (0)
HN
Xem chi tiết
NK
26 tháng 7 2017 lúc 16:09

\(S=1+3^1+3^2+3^3+...+3^{30}\)

\(3S=3+3^2+3^3+...+3^{31}\)

\(3S-S=3^{31}-1\)

\(2S=3^{4.7+3}-1\)

\(2S=81^7.27-1\)

\(2S=\overline{......1}.27-1\)

\(2S=\overline{......7}-1=\overline{......6}\)

\(S=\overline{........3}\)

Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương

Bình luận (0)
NH
Xem chi tiết

Có:S=1+31+32+33+...+330

3S=3+32+33+...+331

3S−S=331−1

2S=34.7+3−1

2S=817.27−1

=>chữ số tận cùng của S là 3

=> S không phải là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
MR
Xem chi tiết
H24
Xem chi tiết