Những câu hỏi liên quan
NP
Xem chi tiết
TA
10 tháng 7 2018 lúc 9:39

ta có

\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y

\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y

dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)

Bình luận (0)
TC
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
SK
Xem chi tiết
Me
5 tháng 12 2019 lúc 13:10

                                                     Bài giải

a) Không tìm được GTLN

Tìm GTNN :

Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)

Vậy GTNN của \(\left|x-2\right|+2019\) là 2019

b,  GTLN :

Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)

\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)

GTNN không tìm được

c, Quên cách làm rồi !

Bình luận (0)
 Khách vãng lai đã xóa
DC
28 tháng 2 2020 lúc 15:13

a) A= |x+2| + 2019

Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN

Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x

nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x

Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019 

Khi đó: |x+2|=0

=>         x+2 =0

=>         x=-2

Vậy biểu thức A đạt GTNN là 2019 khi x= -2

b) B= 2018 - |x+1|

Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN

Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018

Khi đó: |x+1| =0

=>         x+1  =0

=>         x=-1

Vậy biểu thức B đạt GTLN là 2018 khi x =-1

c) C = |x-3| + |y-2| +2020

Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN 

Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x

và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y

=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y

=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y

Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020 

Khi đó: |x-3|=0 và |y-2|=0

=>         x-3=0 và   y-2=0

=>         x=3    và   y=2

Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
DH
16 tháng 1 2021 lúc 18:17

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

Bình luận (0)
 Khách vãng lai đã xóa
DI
Xem chi tiết
LG
Xem chi tiết
NV
31 tháng 10 2015 lúc 11:04

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)

Bình luận (0)
NT
Xem chi tiết
SN
30 tháng 5 2018 lúc 10:08

Ta có : \(\left(x-11\right)^2\ge0\forall x\in R\)

Nên : \(A=\left(x-11\right)^2+2015\ge2015\forall x\)

Do đó : \(A_{max}=2015\) khi x = 11

Bình luận (0)
SN
30 tháng 5 2018 lúc 10:09

Ta có : \(\left(x-1\right)^2\ge0\forall x\)

              \(\left|x+y\right|\ge0\forall x,y\)

Nên : \(B=-2018+\left(x-1\right)^2+\left|x+y\right|\ge-2018\forall x\)

Vậy \(B_{max}=-2018\) khi x = 1 và y = -1

Bình luận (0)
AK
30 tháng 5 2018 lúc 10:11

Ta có : 

\(\left(x-11\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x-11\right)^2+2015\ge2015\forall x\)

Dấu \("="\)  \(\Leftrightarrow\left(x-11\right)^2=0\Leftrightarrow x-11=0\Leftrightarrow x=11\)

Vậy \(GTNN\)của \(A\)là \(2015\Leftrightarrow x=11\)

~ Ủng hộ nhé .

P/s : Phần còn lại mik chưa nghĩ ra 

Bình luận (0)