Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DT
Xem chi tiết
HP
28 tháng 2 2016 lúc 9:55

ko hiểu đề

Bình luận (0)
HP
28 tháng 2 2016 lúc 10:01

để so sánh a/b và a+2012/b+2012

Ta xét tích:a(b+2012) và b(a+2012)

Vì b>0 =>b+2012>0

*a>b <=>2012a>2012b

<=>a(b+2012)>b(a+2012)

<=>a/b>a+2012/b+2012

*a=b<=>2012a=2012b

<=>a(b+2012)=b(a+2012)

<=>a/b=a+2012/b+2012

*a<b<=>2012a<2012b

<=>a(b+2012)<b(a+20120

<=>a/b<a+2012/b+2012

KL: a>b <=>a/b>a+2012/b+2012

....(tương tự như trên)
 

Bình luận (0)
TH
Xem chi tiết
DT
Xem chi tiết
TL
22 tháng 9 2015 lúc 11:05

\(\frac{a}{b}=\frac{a\left(b+2012\right)}{b\left(b+2012\right)}=\frac{ab+2012a}{b\left(b+2012\right)}\)

\(\frac{a+2012}{b+2012}=\frac{\left(a+2012\right)b}{b\left(b+2012\right)}=\frac{ab+2012b}{b\left(b+2012\right)}\)

Vì b > 0 nên b(b + 2012) > 0 

a < 0 ; b > 0 nên a < b => 2012a < 2012b => ab + 2012a < ab + 2012b => \(\frac{ab+2012a}{b\left(b+2012\right)}

Bình luận (0)
HH
Xem chi tiết
LC
5 tháng 9 2015 lúc 22:14

Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)

\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)

Vì a<0<b=>a<b=>a.2012<b.2012

=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}

Bình luận (0)
PK
Xem chi tiết
DK
17 tháng 8 2016 lúc 12:34

\(\frac{a}{b}< \frac{a+20}{b+20}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
LP
8 tháng 9 2016 lúc 9:51

x^2+7x+2 chia hết cho x+7

x(x+7)+2 chia hết cho x+7

Vì x+7 chia hết cho x+7 nên x(x+7) chia hết cho x+7

=>2 chia hết cho x+7

hay x+7EƯ(2)={1;-1;2;-2}

=>xE{-6;-8;-5;-9}

Vậy để (x^2+7x+2) chia hết cho x+7 thì xE{-9;-8;-6;-5}

Bình luận (0)
NN
Xem chi tiết
TT
11 tháng 7 2015 lúc 12:47

(+) Th1 : a = b 

=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

(+) th2 : a < b 

\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}

Bình luận (0)
N6
26 tháng 7 2020 lúc 17:02

Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n) 

                                      <=> a.b+a.n<b.a+b.n

                                      <=> a.n<b.n

                                      <=> a<b                                                =>a/b<a+n/b+n <=> a<b

    Tương tự: a/b>a+n/b+n <=> a>b

Bình luận (0)
 Khách vãng lai đã xóa