Những câu hỏi liên quan
NA
Xem chi tiết
BL
Xem chi tiết
NB
20 tháng 12 2022 lúc 22:12

Từ đề bài, a, b, c có giá trị là 1,2,3. Suy ra giá trị nhỏ nhất của tổng a+b+c= 1+2+3=6. Vậy giá trị nhỏ nhất của tổng a+b+c là 6.

Bình luận (0)
NC
Xem chi tiết
LH
7 tháng 7 2016 lúc 22:13

Giả sử a = 0 \(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=0\)

\(\Rightarrow a=b=c=0\)

Vô lý vì nếu như vậy mẫu của mỗi phân số trên sẽ không tồn tại. Dó đó \(a;b;c\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau; ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)

                                                                                             \(=\frac{1}{2}\)

Do đó giá trị mỗi tỉ số đó là \(\frac{1}{2}.\)

Bình luận (0)
H24
Xem chi tiết
TN
28 tháng 5 2018 lúc 22:32

\(A=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}\)

\(=a^2+b^2+c^2\)

Ez chưa :v

Bình luận (0)
TH
Xem chi tiết
NT
23 tháng 10 2016 lúc 21:38

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

Bình luận (0)
TN
23 tháng 10 2016 lúc 14:42

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

Bình luận (0)
NB
7 tháng 12 2020 lúc 19:20

bạn hỏi từ từ thôi

Bình luận (0)
 Khách vãng lai đã xóa
KZ
Xem chi tiết
KZ
7 tháng 12 2018 lúc 23:02

5. Ta có b = 1 – a, do đó M = a\(^3\) + (1 – a)\(^3\) = 3(a – 1⁄2)2 + 1⁄4 ≥ 1⁄4 . Dấu “=” xảy ra khi a = 1⁄2 .
Vậy min M = 1⁄4 => a = b = 1⁄2 .
6. Đặt a = 1 + x => b 3 = 2 – a\(^3\) = 2 – (1 + x)\(^3\) = 1 – 3x – 3x\(^2\)– x\(^3\) ≤ 1 – 3x + 3x\(^2\)– x\(^3\) = (1 – x)\(^3\)
Suy ra : b ≤ 1 – x. Ta lại có a = 1 + x, nên : a + b ≤ 1 + x + 1 – x = 2.
Với a = 1, b = 1 thì a\(^3\) + b\(^3\) = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1.
7. Hiệu của vế trái và vế phải bằng (a – b)\(^2\)(a + b).

Bình luận (0)
PA
Xem chi tiết
PN
Xem chi tiết
VH
Xem chi tiết
TC
6 tháng 8 2021 lúc 15:28

undefined

Bình luận (0)