Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 8 2018 lúc 2:22

+ Chứng minh (a + b)2 = (a – b)2 + 4ab

Ta có:

VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab

      = a2 + (4ab – 2ab) + b2

      = a2 + 2ab + b2

      = (a + b)2 = VT (đpcm)

+ Chứng minh (a – b)2 = (a + b)2 – 4ab

Ta có:

VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab

      = a2 + (2ab – 4ab) + b2

      = a2 – 2ab + b2

      = (a – b)2 = VT (đpcm)

+ Áp dụng, tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.

Bình luận (0)
LA
Xem chi tiết
HN
13 tháng 9 2015 lúc 20:12

ta có :a)     (a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2                                                                                                                      b)      (a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2=(a-b)2                                                                                Áp dụng:  (a-b)2=(a+b)2-4ab=72-4.12=1               (a+b)2=(a-b)2+4ab=202+4.3=412

Bình luận (0)
H24
13 tháng 9 2015 lúc 20:07

GG

Bình luận (0)
NT
Xem chi tiết
HT
12 tháng 7 2017 lúc 20:43

\(\left(a+b\right)^2=a^2+b^2+2ab=a^2+b^2-2ab+4ab=\left(a-b\right)^2-4ab\)

\(\left(a-b\right)^2=a^2+b^2-2ab=a^2+b^2+2ab-4ab=\left(a-b\right)^2-4ab\)

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\Rightarrow\left(a-b\right)^2=7^2-4\cdot12=49-48=1\)

\(\left(a+b\right)^2=\left(a-b\right)^2-4ab\Rightarrow\left(a+b\right)^2=20^2-4\cdot3=388\)

Bình luận (0)
BT
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 8 2018 lúc 8:28

Bình luận (0)
SK
Xem chi tiết
TM
20 tháng 4 2017 lúc 21:39

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

Bình luận (1)
NM
13 tháng 7 2017 lúc 8:44

CMR: (a + b)2 = (a - b)2 + 4ab

(a - b)2 = (a + b)2 - 4ab

Ta có: (a + b)2 = a2 + 2ab + b2

= a2 +2ab + b2 - 2ab +2ab

= a2 - 2ab + b2 + 2ab +2ab

= (a - b)2 +4ab

Ta có: (a - b)2 = a2 - 2ab + b2

= a2 - 2ab + b2 + 2ab - 2ab

= a2 + 2ab + b2 - 2ab - 2ab

= (a + b)2 - 4ab

Áp dụng:

a) Tính (a - b)2 , biết a + b = 7 và a.b = 12

Ta có: (a - b)2 = (a + b)2 - 4ab

= 72 - 4.12

= 49 - 48

Vậy (a - b)2 = 1

b) Tính (a + b)2 , biết a - b = 7 và a.b = 3

Ta có: (a + b)2 = (a - b)2 + 4ab

= 72 + 4.3

= 49 + 12

Vậy ( a + b)2 = 61

Bình luận (0)
LD
13 tháng 7 2017 lúc 9:31

\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)

\(a^2-2ab+b^2=\left(a-b\right)^2\)

Áp dụng

a)\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

\(=7^2-4.12=49-48=1\)

b) \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(=7^2+4.3=49+12=61\)

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 10 2017 lúc 2:05

Bình luận (0)
NK
Xem chi tiết
NM
29 tháng 6 2015 lúc 13:38

(a+b)\(^2\)có khác j (a+b)\(^2\)đâu bn

Bình luận (0)
TN
18 tháng 10 2016 lúc 14:59

(a+b)2 = a2+2ab+b2=a2-2ab+4ab+b2=a2-2ab+b2+4ab=(a-b)2+4ab 

Bình luận (0)
NK
Xem chi tiết
VV
24 tháng 6 2015 lúc 20:26

Tính ( a - b ) ^ 2, biết a + b = 7 và a . b = 12
Từ đề bài ta có:           ( a - b ) ^ 2 = ( a + b ) ^ 2 - 4ab
                               = ( a - b ) ^ 2 = 7 ^ 2 - 4 . 12
                               = ( a - b ) ^ 2 = 49 - 48
                               = ( a - b ) ^ 2 = 1
Vậy ( a - b ) ^ 2 với a + b = 7 và a . b = 12 bằng 1.

Bình luận (0)