Tìm GTNN
\(A=x^2-2xy+2y^2-4y+5\)
Tìm GTNN:
A = x2 + 4y2 - 3x - 4y + 5
B = x2 + 2y2 - 2xy + 4y - 7
Đang onl bằng điện thoại nên mình làm sơ sơ thôi nhé :((
A = ( x2 - 3x + 9/4 ) + ( y2 - 4y + 4 ) - 5/4
= ( x - 3/2 )2 + ( y - 2 )2 - 5/4 >= -5/4
Dấu = xảy ra <=> x = 3/2 ; y = 2
Vậy ...
B = ( x2 - 2xy + y2 ) + ( y2 + 4y + 4 ) - 11
= ( x - y )2 + ( y + 2 )2 - 11 >= -11
Dấu = xảy ra <=> x = y = -2
Vậy ...
a) \(A=x^2+4y^2-3x-4y+5\)
\(=\left(x^2-3x+\frac{9}{4}\right)+\left(4y^2-4y+1\right)+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\left(2y-1\right)^2+\frac{7}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\); \(\left(2y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(2y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(2y-1\right)^2+\frac{7}{4}\ge\frac{7}{4}\forall x,y\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{3}{2}=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy \(minA=\frac{7}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
b) \(B=x^2+2y^2-2xy+4y-7\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)-11\)
\(=\left(x-y\right)^2+\left(y+2\right)^2-11\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\); \(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-11\ge-11\forall x,y\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=-2\end{cases}}\Leftrightarrow x=y=-2\)
Vậy \(minB=-11\)\(\Leftrightarrow x=y=-2\)
Tìm GTNN:
a) B= x2 + 2y2 - 2xy - 4y + 5
b) C= 2x2 - 2xy + 5y2 +5
Tìm GTNN của biểu thức:
a) \(A=2x^2+2xy+y^2-2x+2y+2\)
b) \(B=-x^2+2xy-4y^2+2x+10y+5\)
c) \(C=-x^2-2y^2-2xy+2x-2y-15\)
tìm GTNN của A = x2+2y2-2xy+2x+4y+10
Tìm GTNN của biểu thức:
\(C=x^2+2y^2-2xy-4y+5\)
Ta có \(C=x^2+2y^2-2xy-4y+5=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+1\)
Do \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\Rightarrow C\ge1\)
Vậy GTNN của C là 1 khi \(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)
tìm GTNN của biểu thức
A=x^2+2y^2+2xy+2x-4y+2016
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)
Hay \(A\ge2006;\forall x,y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Tìm GTNN chủa biểu thức:
a,A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
phân tích đa thức có dạng m2 + n ( n thuộc z)
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
Tìm GTNN của A=\(x^2+2xy+2y^2-4y\)
Tìm GTNN của A=\(x^2+2xy+2y^2-4y\)