Những câu hỏi liên quan
CD
Xem chi tiết
NV
Xem chi tiết
HN
20 tháng 5 2016 lúc 9:32

\(A=\frac{4\left(x+y+\sqrt{xy}\right)}{x+y+2\sqrt{xy}}=\frac{3\left(x+y+2\sqrt{xy}\right)+\left(x+y-2\sqrt{xy}\right)}{\left(x+y+2\sqrt{xy}\right)}=\frac{3\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}+3\ge3\)

=> \(A\ge3\)

Vậy Min A = 3 khi x=y

Bình luận (0)
BH
Xem chi tiết
H24
29 tháng 9 2019 lúc 9:18

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

Bình luận (0)
BH
30 tháng 9 2019 lúc 9:59

dit me may 

Bình luận (1)
LK
19 tháng 7 2020 lúc 19:01

bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ? 

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
XO
17 tháng 2 2022 lúc 18:11

Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)

\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)

Lại có  \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)

=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky) 

Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)

Đặt x + y = a ; y + z = b ; x + z = c

Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)

=> \(P\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x = y = z 

Bình luận (0)
 Khách vãng lai đã xóa
ND
16 tháng 2 2022 lúc 20:43

bài 8 : bỏ dấu hoặc  rồi tính 

a;( 17 - 299) + ( 17 - 25 + 299)

Bình luận (0)
 Khách vãng lai đã xóa
HN
16 tháng 2 2022 lúc 20:44

bằng 20 ấn mtinh ra thế

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
AH
27 tháng 2 2019 lúc 23:11

Lời giải:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\sqrt{y-2}\leq \frac{(y-2)+2}{2\sqrt{2}}=\frac{y}{2\sqrt{2}}\) \(\Rightarrow x\sqrt{y-2}\leq \frac{xy}{2\sqrt{2}}\)

\(\sqrt{x-3}\leq \frac{(x-3)+3}{2\sqrt{3}}=\frac{x}{2\sqrt{3}}\Rightarrow y\sqrt{x-3}\leq \frac{xy}{2\sqrt{3}}\)

Do đó:

\(M=\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\leq \frac{\frac{xy}{2\sqrt{2}}+\frac{xy}{2\sqrt{3}}}{xy}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)

Vậy \(M_{\max}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi \(x=6;y=4\)

Bình luận (2)
DT
Xem chi tiết
DD
Xem chi tiết
GL
8 tháng 6 2020 lúc 22:51

\(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\rightarrow\left(a,b,c\right)\)

\(\Rightarrow ab+bc+ca=3\)

Áp dụng bđt Cauchy-Schwarz ta có

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)

Dấu "=" xảy ra khi a=b=c=1 => x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
BY
Xem chi tiết
NG
Xem chi tiết
TN
18 tháng 9 2016 lúc 23:07

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam

Bình luận (0)