Chứng minh rằng nếu p và 2p+1 là các số nguyên tố lớn hơn 3 thì 4p+1 là hợp số.
chứng minh rằng nếu P và 2P+1 là các số nguyên tố lớn hơn 3 thì 4P+1 là hợp số
Số nguyên tố lớn hơn 3 có dạng:3k+1,3k+2(k\(\in\)N*)
Với p=3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3(trái với giả thiếu)
Với p=3k+2 thì 4p+1=4(3k+2)+1=12k+9 chia hết cho 3,là hợp số
Vậy nếu p và 2p+1 là các số nguyên tố lớn hơn 3 thì 4p+1 là hợp số(đpcm)
Vì P là số nguyên tố lớn hơn 3 nên P có dạng 3k+1 hoặc 3k+2( K \(\ge\) 1)
Với P=3k+1
Khi đó 2P+1 = 2(3k+1) +1 = 6k+ 3 luôn chia hết cho 3 với mọi k \(\ge\) 1( => 2P+1 là hợp số, trái với đề bài)
=> Số nguyên tố P có dạng 3k+ 2
Ta có: 4P +1= 4(3k+2)+1= 12k +9 luôn chia hết cho 3 với mọi k\(\ge\) 1 mà 4P +1 luôn lớn hơn 3
Vậy 4P+1 là hợp số nếu P và 2P+1 là các số nguyên tố lớn hơn 3
Chứng minh rằng nếu P và 2P+1 là các số nguyên tố lớn hơn 3 thì 4P+1 là hợp số.
Vì p là số nguyên tố <3 nên p=3k+1 hoặc 3k+2(k thuộc N*)
- Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 và 6k+3>3 nên 2p+1 là hợp số (loại)
-Nếu p=3k+2 thì 4p+1=4(3k+2)+1= 12k+9 chia hết cho 3 và 12k+9>3 nên là hợp số (loại)
suy ra 4p+1 là hợp số (đpcm)
k xem mình đúng ko nha.
Chỗ p là sô nguyên tố >3 nha.
Vì p là số nguyên tố <3 => p=3k+1 hoặc 3k+2(k ϵ N*) (1)
- Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 và 6k+3>3 nên 2p+1 là hợp số (loại) (2)
từ (1) và (2) =>p=3k+2
-Nếu p=3k+2 thì 4p+1=4(3k+2)+1= 12k+9 chia hết cho 3 và 12k+9>3 nên 4p+1 là hợp số(đpcm)
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho 3. Nghĩa là $p$ chia $3$ dư $1$ hoặc $2$.
Nếu $p$ chia $3$ dư $1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p>3$ nên $2p+1$ không là snt (trái với đề)
$\Rightarrow p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số.
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Vì p là số nguyên tố lớn hơn 3 nên \(p=3k+1\) hoặc \(p=3k+2\) \(\left(k\inℕ^∗\right)\)
Nếu \(p=k+1\) thì \(2p+1=2.\left(3k+1\right)+1=6k+3\in3\) và \(6k+3>3\)
\(\Leftrightarrow2p+1\) là hợp số \(\left(loại\right)\)
Nếu \(p=3k+2\) . Khi đó \(4p+1=4.\left(3k+2\right)=1=12k+9\in3\)
Và \(12k+9>3\) nên là hợp số \(\left(nhận\right)\)
Chứng minh rằng nếu P và 2P+1 là các số nguyên tố lớn hơn 3 thì 4P+1 là hợp số
vì p>3 nên p lẻ suy ra p là 3k+1 hoặc 3k+2
nếu là 3k+1 suy ra 2p+ chia hết cho 3(loại)
nếu p=3k+2 suy ra 4p+4 là hợp số
ơ sao 2p+ lại chia hết cho 3
bạn phan bá hưng
Chứng minh rằng: nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số?
Theo đề ra: p là số nguyên tố lớn hơn 3 => p không chia hết cho 3
=> p = 3k + 1 hoặc p = 3k + 2
* Với p = 3k + 1 thì:
2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 )
=> 2p + 1 chia hết cho 3
Ta có: 2p + 1 > 3
=> 2p + 1 là hợp số ( loại )
* Với p = 3k + 2 thì:
4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 )
=> 4p + 1 chia hết cho 3
Ta có: 4p + 1 > 3
=> 4p + 1 là hợp số
Vậy ...
Chứng minh rằng :
Nếu p là số nguyên tố lớn hơn 3 và 2p + 1 là số nguyên tố thì 4p + 1 là hợp số .
Ta có: 3k+1;3k+2
TH1:Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3 là hợp số
TH2: Nếu p=3k+2 thì 2p+1=2(3k+1)+1=6k+4+1=6k+5 là số nguyên tố
Mà 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9
=> 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Nên 4p+1 là hợp số
<=> đcpm
chứng minh rằng :nếu p là số nguyên tố lớn hơn 3 và 4p+1 cũng là số nguyên tố thì 2p+1 là hợp số
vì p là snt >3 suy ra p chỉ có hai dạng 3k+1 và 3k+2
th1 : nếu p =3k+1 thì 2p+1=2(3k+1)+1=6k+3(Vì 6k+3>3, và 6k+3 chia hết cho 3 nên 2k+1 là hợp số)
th2 : nếu p =3k+2 thì 4p+1=4(3k+2)+1=12k+9 ( ..........tự chứng minh.....
Vạy nếu p là..........................
chứng minh rằng nếu p lá số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1laf hợp số