Tính:
\(\frac{1}{2018}-\frac{1}{2019}-\frac{2017}{2018}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính
\(\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
\(\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
= \(\left(\frac{1}{20}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
= \(0\cdot\left(\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)
Đặt \(\frac{2017}{2018}-\frac{2018}{2019}=A\)
Ta có :
\(\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
\(=\left(\frac{5}{20}-\frac{4}{20}-\frac{1}{20}\right).A\)
\(=\left(\frac{1}{20}-\frac{1}{20}\right).A\)
\(=0.A\)
\(=0\)
Vậy ...
Chúc bạn học tốt !!!
\(\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
\(=\left(\frac{5}{20}-\frac{4}{20}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
\(=0\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
\(=0\)
Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
Tính P,biết,P=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+L+\frac{1}{2019}}{\frac{2018}{1}+\frac{2017}{1}+\frac{2016}{1}+L+\frac{1}{2018}}\)
A = \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)và B = \(\frac{2016+2017+2018}{2017+2018+2019}\)
\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)
\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)
\(\Rightarrow A\)>\(3-1=2\)
\(B=\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow B=1-\frac{3}{6054}\)
\(\Rightarrow B=1-\frac{1}{2018}\)
\(B\)<\(1\);\(A\)>\(2\)
\(\Rightarrow A\)>\(B\)
Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
B = \(\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}+\frac{1}{2019}\)
Tính ( A - B - 1)2019
Ơ !!! Bài này giống bài 5 môn Toán thi cuối học kỳ 2 trường mình nè !!!
Bài làm
Ta có: \(A=\) \(1\) \(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)\(......\)\(+\)\(\frac{1}{2017}\)\(-\)\(\frac{1}{2018}\)\(+\)\(\frac{1}{2019}\)
\(\Rightarrow\) \(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-2\left(\frac{1}{2}+\frac{1}{4}+......+\frac{1}{2018}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2019}-\left(1+\frac{1}{2}+......+\frac{1}{1009}\right)\)
\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+......+\frac{1}{2019}\)
\(\Rightarrow A=B\)
Khi đó: (A - B - 1)2019 = -12019 = -1
Chúc bạn học tốt. K cho mk nhé! Thank you.
So sánh:
\(C=\frac{2018^{2019}-1}{2018^{2018}-1}\)và\(D=\frac{2017^{2018}+1}{2017^{2017}+1}\)
\(\frac{1}{2017}\)_\(\frac{1}{2018}\)+\(\frac{1}{2019}\)=\(\frac{1}{2018}\)_\(\frac{1}{2017-2019}\)
Thực hiện phép tính :
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\) \(B=\frac{1}{2018}+\frac{2}{2017}+\frac{3}{2016}+...+\frac{2017}{2}+\frac{2018}{1}\)
Tính \(\frac{A}{B}\)
ta có B= 1/2018+2/2017+3/2016+...+2017/2+2018/1
=> B=1+1+1+..+1( 2018 số hạng 1)+ 1/2018+..+2017/2
=> B= (1+1/2018)+(1+2/2017)+(1+3/2016)+...+(1+2017/2)+ 2019/2019
=> B= 2019 *(1/2+1/3+...+1/2019)
=> A/B= (1/2+1/3+...+1/2019)/2019*(1/2+1/3+..+1/2019)
=> A/B= 1/2019