Những câu hỏi liên quan
PH
Xem chi tiết
PQ
3 tháng 12 2016 lúc 20:40

Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+1+1+\frac{1}{x^2y^2}\)\(\Rightarrow\frac{x^4y^4+2x^2y^2+1}{x^2y^2}=\frac{\left(x^2y^2+1\right)^2}{x^2y^2}=\left(xy+\frac{1}{xy}\right)^2\)\(Tac\text{ó}:xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\)\(\text{ \text{áp} d\text{ụng} b\text{đ}t c\text{ô} si ta c\text{ó}: }\)

Áp dụng bddt cô si ta có :\(xy+\frac{1}{16xy}\ge2\sqrt{\frac{xy.1}{16xy}}=\frac{2.1}{4}=\frac{1}{2}\)

\(xy\le\frac{\left(x+y\right)^{2\Rightarrow}}{4}\Rightarrow xy\le\frac{1}{4}\Rightarrow\)\(\frac{1}{16xy}\ge\frac{4}{16}\Leftrightarrow\)\(\frac{15}{16xy}\le\frac{60}{16}=\frac{15}{4}\)\(\Rightarrow M=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{1}{2}+\frac{15}{4}\right)^2=\left(\frac{17}{4}\right)^2=\frac{289}{16}\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
KN
29 tháng 11 2019 lúc 5:59

Đặt \(A=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=y^2\left(x^2+\frac{1}{y^2}\right)+\frac{1}{x^2}\left(x^2+\frac{1}{y^2}\right)\)

\(=x^2y^2+1+1+\frac{1}{x^2y^2}\)

\(=x^2y^2+\frac{1}{x^2y^2}+2\)

\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)

Áp dụng BĐT Cauchy cho 2 số không âm:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

C/m bđt phụ : \(1=\left(x+y\right)^2\ge4xy\)

\(\Rightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)

\(\Rightarrow A\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 11 2019 lúc 19:10

Mù mắt với BĐT AM-GM:

\(A=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=\left(x^2+\frac{1}{16y^2}+...+\frac{1}{16y^2}\right)\left(y^2+\frac{1}{16x^2}+....+\frac{1}{16x^2}\right)\) (gồm có 16 phân thức \(\frac{1}{16y^2}\left(\text{ở ngoặc thứ nhất}\right),16\text{ phân thức}\frac{1}{16x^2}\left(\text{ở ngoặc thứ hai }\right)\))

\(\ge17^2\sqrt[17]{\frac{x^2}{16^{16}y^{32}}}\sqrt[17]{\frac{y^2}{16^{16}x^{32}}}=17^2\sqrt[17]{\frac{1}{16^{32}x^{30}y^{30}}}\)

\(\ge17^2\sqrt[17]{\frac{1}{16^{32}\left[\frac{\left(x+y\right)^2}{4}\right]^{30}}}=17^2\sqrt[17]{\frac{1}{16^{17}}}=\frac{17^2}{16}=\frac{289}{16}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
HN
Xem chi tiết
DQ
12 tháng 3 2021 lúc 18:56

Ta có:

\(M=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)

\(=\left(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\right)+\frac{5}{8}.\frac{2x+y}{2}\)

Có: \(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\ge2\sqrt{\frac{3}{8}.\frac{2x+y}{2}.\frac{3}{2x+y}}=\frac{3}{2}\)

Dấu '=' xảy ra <=> \(\frac{3}{8}.\frac{2x+y}{2}=\frac{3}{2x+y}\)

Có: \(\frac{5}{8}.\frac{2x+y}{2}\ge\frac{5}{8}\sqrt{2xy}=\frac{5}{4}\)

Dấu '=' xảy ra <=> 2x=y và xy=2

Do đó \(M\ge\frac{3}{2}+\frac{5}{4}=\frac{11}{4}\)

Dấu '=' xảy ra <=> x=1 và y=2

Vậy GTNN của  M là 11/4 khi x=1 và y=2

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
H24
21 tháng 2 2019 lúc 9:33

Dự đoán dấu "=" khi x = 2 ; y= 1

Áp dụng bđt Cô-si cho 3 số và bđt \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) ta được

\(P=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)

    \(=\left(\frac{7x^2}{4}+\frac{14}{x}+\frac{14}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{2y}+\frac{1}{2y}\right)+\left(\frac{x^2}{4}+\frac{y^2}{2}\right)\)

    \(\ge3\sqrt[3]{\frac{7x^2.14.14}{4.x^2}}+3\sqrt[3]{\frac{y^2.1.1}{2.2y.2y}}+\frac{\left(x+y\right)^2}{4+2}\)

      \(=3.\sqrt[3]{\frac{7.14.14}{4}}+\frac{3}{\sqrt[3]{2^3}}+\frac{3^2}{6}=24\)

Dấu "=" khi x = 2 ; y = 1 

Bình luận (0)
H24
21 tháng 2 2019 lúc 9:37

Bài toán easy!

\(P=\left(2x^2+8\right)+\left(y^2+1\right)+\frac{28}{x}+\frac{1}{y}-9\)

Áp dụng BĐT AM-GM,ta có:

\(P\ge8x+2y+\frac{28}{x}+\frac{1}{y}-9\)

\(=\left(7x+\frac{28}{x}\right)+\left(y+\frac{1}{y}\right)+\left(x+y\right)-9\)

\(\ge2\sqrt{7x.\frac{28}{x}}+2\sqrt{y.\frac{1}{y}}+\left(x+y\right)-9\)

\(\ge28+2+3-9=24\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x^2=8\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy \(P_{min}=24\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Bình luận (0)
H24
21 tháng 2 2019 lúc 9:39

Làm xong rồi mới biết anh Incursion đã làm rồi -_-.Nãy giờ cứ chăm chú vào máy tính casio để tìm dấu "=" nên chả để ý=((

Bình luận (0)
NM
Xem chi tiết
HL
11 tháng 5 2017 lúc 20:38

1 thách dám tích

Bình luận (0)
DD
17 tháng 5 2017 lúc 15:22

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{2xy}\\ =\frac{1}{4}+\frac{1}{2xy}\ge\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\)

Dấu = xảy ra khi x=y=2

Bình luận (0)
CK
12 tháng 6 2020 lúc 20:18

vay la ??????????????????????????

Bình luận (0)
 Khách vãng lai đã xóa
KB
Xem chi tiết
H24
20 tháng 2 2019 lúc 6:39

                                    Lời giải

Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)

Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)

\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)

\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)

Vậy ...

Bình luận (0)
H24
Xem chi tiết
H24
10 tháng 6 2019 lúc 10:50

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)

Dấu "=" xảy ra khi:

\(x=y=z=\frac{2}{3}\)

Bình luận (0)
TD
10 tháng 6 2019 lúc 10:50

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\)  ( 1 )

Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\)                                       ( 2 )

                \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)                                          ( 3 )

Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :

\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)

\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\) 

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

Bình luận (0)

\(\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{x+z}+\frac{z\left(x+y+z\right)}{x+y}\)

\(\Rightarrow P+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{x+y}+\frac{y}{x+z}+\frac{z}{x+y}\right)\)hay \(P+2=2\cdot\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\).Mặt khác \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zx+zy}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)

Do đó \(P+2\ge2\cdot\frac{3}{2}=3\Rightarrow P\ge1\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{x}{xy+xz}=\frac{y}{yx+yz}=\frac{z}{zx+zy}\\x=y=z\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{y+z}=\frac{1}{x+z}=\frac{1}{x+y}\\x=y=z\end{cases}\Leftrightarrow}x=y=z=\frac{2}{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
CD
Xem chi tiết
NM
28 tháng 1 2021 lúc 19:38

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?

Bình luận (0)
 Khách vãng lai đã xóa
NM
28 tháng 1 2021 lúc 19:46

8

555566655

5665656746565656+5965=?

Bình luận (0)
 Khách vãng lai đã xóa
DQ
28 tháng 1 2021 lúc 19:48

Ta có: \(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)\(-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) và \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) ( với a,b,c dương)

Dấu '=' xảy ra <=> a=b=c

Lại có: \(\frac{1}{x+1}\le\frac{1}{4}\left(\frac{1}{x}+1\right);\frac{1}{y+1}\le\frac{1}{4}\left(\frac{1}{y}+1\right);\frac{1}{z+1}\le\frac{1}{4}\left(\frac{1}{z}+1\right)\)

\(\Rightarrow P=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{1}{4}\left(\frac{1}{x}+1+\frac{1}{y}+1+\frac{1}{z}+1\right)\)

\(=\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\ge\frac{3}{4}\frac{9}{x+y+z}-\frac{3}{4}=\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)

Vậy GTNN của P= 3/2 <=> x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
TL
19 tháng 8 2020 lúc 22:30

Bài này có cách lập bảng biến thiên,nhưng mình sẽ làm cách đơn giản

Từ giả thiết \(x^2+y^2+z^2=1\Rightarrow0< x,y,z< 1\)

Áp dụng Bất Đẳng Thức Cosi cho 3 cặp số dương \(2x^2;1-x^2;1-x^2\)

\(\frac{2x^2+\left(1-x^2\right)+\left(1-x^2\right)}{3}\ge\sqrt[3]{2x^2\left(1-x^2\right)^2}\le\frac{2}{3}\)

\(\Leftrightarrow x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{x}{y^2+z^2}\ge\frac{3\sqrt{3}}{2}x^2\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{y}{z^2+x^2}\ge\frac{3\sqrt{3}}{2}y^2\left(2\right)\\\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}z^2\left(3\right)\end{cases}}\)

Cộng các vế (1), (2) và (3) ta được \(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{3}}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa