Tìm 2 số nguyên a và b sao cho:
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}\cdot\frac{1}{b}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm hai số nguyên a,b khác nhau sao cho :\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}\cdot\frac{1}{b}\)
Qui đồng lên là đc
1/a-1/b=b-a/ab=1/ab
Vậy b-a=1 hay b=a+1 với mọi a,b nguyên(a,b#0)
hok tốt
tìm 2 số a và b nguyên biết, \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}\cdot\frac{1}{b}\)
a) Rút gọn:
\(\frac{\frac{1}{1\cdot300}+\frac{1}{2\cdot301}+\frac{1}{3\cdot302}+...+\frac{1}{101\cdot400}}{\frac{1}{1\cdot102}+\frac{1}{2\cdot103}+\frac{1}{3\cdot104}+...+\frac{1}{299\cdot400}}\)
b) CMR: \(1\cdot3\cdot5\cdot7\cdot9\cdot...\cdot197\cdot199\)= \(\frac{101}{2}\cdot\frac{102}{2}\cdot\frac{103}{2}\cdot...\cdot\frac{200}{2}\).
c) Cho: A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\).
B=\(\frac{1}{101\cdot200}+\frac{1}{102\cdot199}+...+\frac{1}{199\cdot102}+\frac{1}{200\cdot101}\).
d) Tìm số tự nhiên n lớn nhất có ba chữ số sao cho n chia 8 dư 7,chia 31 dư 28.
e) Tìm số nguyên tố \(\overline{ab}\) (a>0>b),sao cho \(\overline{ab}-\overline{ba}\)là số chính phương.
a)Tìm các số tự nhiên a,b sao cho: (\(\left(2008\cdot a+3\cdot b+1\right)\cdot\left(2008^a+2008\cdot a+b\right)=225\)
b)Tìm x thỏa mãn: \(11\frac{1}{2}\cdot\frac{1}{|3x-1|}=\frac{23}{28}\)
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
Tìm các cặp số a,b thỏa mãn sao cho:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a\cdot b}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{1}{ab}\)
\(\Rightarrow a+b=1\)
=> a ; b thỏa mãn a+b = 1 ( a;b khác 1)
Cho 4 số nguyên dương a,b,c,d trong đó b là trung bình cộng của a và c đồng thời \(\frac{1}{c}=\frac{1}{2}\cdot\left(\frac{1}{b}+\frac{1}{d}\right)\). Chứng minh \(\frac{a}{b}=\frac{c}{d}\).
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
Tìm các số tự nhiên a, b, c, d thỏa mãn : \(\frac{1}{a\cdot a}+\frac{1}{b\cdot b}+\frac{1}{c\cdot c}+\frac{1}{d\cdot d}=1\)
Ta thấy a, b, c, d > 1 vì nếu một số bằng 1 thì tổng lớn hơn 1
Nếu trong 4 số a, b, c, d có ít nhất 1 số lớn hơn 2 thì tổng đã cho có GTLN là :
\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}< \frac{1}{4}\cdot4=1\)
Do đó a, b, c, d < 3
Vậy a = b = c = d = 2, ta có :
\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}=1\) ( đúng )
Cbht
\(\text{= 1}\)
\(\frac{1}{aa}+\frac{1}{bb}+\frac{1}{cc}+\frac{1}{dd}\)\(=1\)
\(\frac{1}{2.2}+\frac{1}{2.2}+\frac{1}{2.2}+\frac{1}{2.2}\)= 1
\(4.\frac{1}{4}=1\)
vậy {a ,b ,c ,d} =2
\(\frac{1}{aa}+\frac{1}{bb}+\frac{1}{cc}+\frac{1}{dd}\)\(=1\)
Tìm tất cả các số nguyên dương (x: y: z) sao cho x + y + z = xyz
Tìm a , b \(\in N^{\cdot}\) sao cho
A, \(\frac{1}{a}+\frac{1}{b}=\frac{5}{9}\)
b , a2 + b +2 = 2ab
\(x+y+z=xyz\left(1\right)\)
Do x,y,z có vai trò như nhau ,giả sử \(1\le x\le y\le z\)
\(=>xyz=x+y+z\le3z\)
Chi cả 2 vế của PT trên cho x,ta có: \(\frac{xyz}{z}\le\frac{3z}{z}=>xy\le3=>xy\in\left\{1;2;3\right\}\)
\(\left(+\right)xy=1=>x=1;y=1\),thay vào (1) ta được \(z=2+z=>0=2\) (vô lí)
\(\left(+\right)xy=2=>x=1;y=2\),thay vào (1) ta được z=3
\(\left(+\right)xy=3=>x=1;y=3\),thay vào (1) ta được z=2; nhưng theo sắp xếp \(y\le z\) nên z=2 là vô lí
Vậy (x;y;z)=(1;2;3)