Chứng tỏ: \(x^2+2x+9y^2+6y+15>0\forall x;y\)
Chứng tỏ: \(x^2+2x+9y^2+6y+15>0\forall x;y\)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(A=x^2+2x+9y^2+6y+15\)
\(=\left(x+1\right)^2+\left(3y+1\right)^2+13\)
\(\left(x+1\right)^2\ge0\)
\(\left(3y+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(3y+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(3y+1\right)^2+13\ge13\)
\(\Rightarrow A\ge13\)
\(\Rightarrow A>0\)
\(x^2+2x+9y^2+6y+15\)
\(=\left(x^2+2x+1\right)+\left(9y^2+6y+1\right)+14\)
\(=\left(x+1\right)^2+\left(3y+1\right)^2+14\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(3y+1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+1\right)^2+\left(3y+1\right)^2+14>0\forall x,y\)
\(\Rightarrow x^2+2x+9y^2+6y+15>0\forall x,y\)
Tim x,y biet:
1)x^2-2x+5+y^2-4y=0
2)4x^2+y^2-20x+26-2y=0
3)x^2+4y^2+13-6x-8y=0
4)4x^2+4x-6y+9x^2+2=0
5)x^2+y^2+6x-10y+34=0
6)25x^2-10x+9y^2-12y+5=0
7)x^2+9y^2-10x-12y+29=0
89x^2+12x+4y62+8y+8=0
9)4x^2+9y^2+20x-6y+26=0
10)3x^2+3y^2+6x-12y+15=0
11)x^2+4y^2+4x-4y+5=0
12)4x^2-12x+y^2-4y+13=0
13)x^2+y^2+2x-6y+10=0
14)4x^2+9y^2-4x+6y+2=0
15)y^2+2y+5-12x+9x^2=0
16)x^2+26+6y+9y^2-10x=0
17)10-6x+12y+9x^2+4y^2=0
18)16x^2+5+8x-4y+y^2=0
19)x^2+9y^2+4x+6y+5=0
20)5+9x^2+9y^2+6y-12x=0
21)x^2+20+9y62+8x-12y=0
22)x^2=4y+4y^2+26-10x=0
23)4y^2+34-10x+12y+x^2=0
24)-10x+y^2-8y+x^2+41=0
25)x^2+9y^2-12y+29-10x=0
26)9x^2+4y^2+4y+5-12x=0
27)4y^2-12x+12y+9x^2=13=0
28)4x^2+25-12x-8y+y^2=0
29)x62+17+4y^2+8x+4y=0
30)4y^2+12y+25+8x+x^2=0
31)x^2+20+9y^2+8x-12y=0
giup mk voi minh can gap ak, cam on cac ban
1.tìm GTNN
A=\(x^2-2x+5\)
B=\(2x^2-6x\)
C=\(x^2+y^2-x+6y+10\)
2.tìm GTLN
A=\(6x-x^2+3\)
B=\(x-x^2+2\)
C=\(5x-x^2-5\)
3.chứng tỏ rằng
a,\(x^2-6x+10>0\forall x\)
b,\(4x-x^2-5< 0\forall x\)
c,\(x^2-x+1>0\forall x\)
d,\(-x^2+2x-4< 0\forall x\)
Giúp mink với.Mình đg cần rất chi là gấp vì chiều mai mink phải nộp rồi
1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)
\(=\left(x-1\right)^2+4\)
Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)
Vậy Min A=4 tại x=1
b,\(B=2x^2-6x=2\left(x^2-3x\right)\)
\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)
(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)
Bài 2
a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)
\(=-\left(x^2-2.x.3+3^2-9-3\right)\)
\(=-\left[\left(x-3\right)^2-12\right]\)
\(=-\left(x-3\right)^2+12\)
Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)
\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)
Vậy Max A =12 tại x=3
b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)
Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)
c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))
Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)
Mình làm tiếp phần của Dũng Nguyễn nha.
b) \(4x-x^2-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2.x.2+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x
Vậy \(4x-x^2-5< 0\) với mọi x
c) \(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
Vậy \(x^2-x+1>0\) với mọi x
d) \(-x^2+2x-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left(x^2-2x+1+3\right)\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-1\right)^2-3\le-3\)
\(\Rightarrow-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi x
a,\(x^2-6x+10=x^2-2.x.3+3^2-9+10\)
\(=\left(x-3\right)^2+1\)
Do \(\left(x-3\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)(đpcm)
Yukru làm mấy câu còn lại hộ tớ!
Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến: a) -x^3+(x - 3)[(2x+1)^2 - 2( 3/2 x^2 + 1/2 x - 4)]
b) (x+2y)^3 -(x-3y)(x^2+3xy+9y^2 )-6y(x^2+2xy - 35/6 y^2 )
\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)
\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)
Chứng minh
A = 2x^2 + 8x + 15 >0, \(\forall\)x
A = x^2 - 2x + y^2 + 4y + 6, \(\forall\)x,y
Ta có A = 2x2 + 8x + 15 = 2x2 + 8x + 8 + 7
= 2(x2 + 4x + 4) + 7 = 2(x + 2)2 + 7 \(\ge7>0\)
b) Ta có A = x2 - 2x + y2 + 4y + 6
=(x2 - 2x +1) + (y2 + 4y + 4) + 1
= (x - 1)2 + (y + 2)2 + 1 \(\ge1>0\)
- ( 2x + 1 ) (3y - 2 ) + 6y (x -1 ) = 15 - ( 1+9y)
\(-\left(2x+1\right)\left(3y-2\right)+6y\left(x-1\right)=15-\left(1+9y\right)\)
\(\Leftrightarrow-\left(6xy-4x+3y-2\right)+6xy-6y=15-1-9y\)
\(\Leftrightarrow-6xy+4x-3y+2+6xy-6y-14+9y=0\)
\(\Leftrightarrow4x-12=0\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=3\)
Chúc bạn học tốt!!!
Tk cho mk nha... Cảm ơn nhìu...
tim x y z biết
a,4x^2+9y^2+4x-24y+17=0
b,2x^2+2y^2+z^2+2xy-2xz-6y+9=0
c,x^2+2y+2xy+2x+6y+5=0
tim x y z biết
a,4x^2+9y^2+4x-24y+17=0
b,2x^2+2y^2+z^2+2xy-2xz-6y+9=0
c,x^2+2y+2xy+2x+6y+5=0
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
\(x^2+9y^2+2x-6y+2=0\)
\(\Leftrightarrow x^2+2x+1+9y^2-6y+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(3y-1\right)^2=0\)
Đẳng thức xảy ra khi \(x=-1;y=\frac{1}{3}\)