Tim x biết 1\1x2+1\2*3 +1\3*4+----+1\**(×+1)=996\997
tim:1/1*2+1/2*3+1/3*4+...+1/x*(x+1)=996/997
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{996}{997}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{996}{997}\)
\(1-\frac{1}{x+1}=\frac{996}{997}\)
\(\frac{1}{x+1}=1-\frac{996}{997}\)
\(\frac{1}{x+1}=\frac{1}{997}\)
\(\Rightarrow x+1=997\)
\(x=997-1\)
\(x=996\)
1/1x2+1/2x3 +......+1/x x(x+ 1)=996/997
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{996}{997}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{996}{997}\)
\(1-\frac{1}{x+1}=\frac{996}{997}\)
\(\frac{1}{x+1}=1-\frac{996}{997}=\frac{1}{997}\)
\(\Rightarrow x+1=997\Rightarrow x=996\)
Vậy \(x=996\)
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/x - 1/x + 1 = 996/997
Tìm x
CMR: 1-1/2+1/3-1/4+...+1/1990=1/996+1/997+...+1/1990
CMR: 1-1/2+1/3-1/4+.....-1/1990=1/996+1/997+.....+1/1990
1,CMR:1-1/2-1/3-1/4-...-1/1990=1/996 1/997 ... 1/1990
CMR: (1-1/2+1/3-1/4+1/5-...-1/1990)=(1/996+1/997+...+1/1990)
CMR:1- 1/2 + 1/3 - 1/4 + ... + 1/1989 - 1/1990 = 1/996 + 1/997 + ...1/1990
1 + 2 - 3 - 4 + ....+ 994 -995 - 996 + 997 + 998
`1 + 2 - 3 - 4 + ....+ 994 -995 - 996 + 997 + 998 `
`= 1 + (2 - 3 - 4 +5) +....+ (994 -995 - 996 + 997) + 998 `
`= 1 + 0 + ...+ 0 + 998`
`= 1 + 998`
`= 999`
Đề :
`1+2-3-4+...+994-995-996+997+998`
\(\Rightarrow\) `1+(2-3-4+5)+...+(994-995-996+997)+998`
\(\Rightarrow\) `1+0+...+0+998`
\(\Rightarrow\) `1+998`
\(\Rightarrow\) `999`
@Nae