Những câu hỏi liên quan
H24
Xem chi tiết
TG
Xem chi tiết
HT
21 tháng 8 2015 lúc 8:16

đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5

ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d

=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d

=> ( 6n + 5) - 3( 2n + 1) : hết cho d

=> 2 : hết cho d

=> d = 2

mà 2n + 1 ko : hết cho d

=> d = 1( dpcm)

Bình luận (0)
TN
21 tháng 8 2015 lúc 8:29

a) Goi d la UCLN ( n ; n+1 )                       b) Goi d la UCLN ( 3n+2 ;5n+3)

n+1 chia het cho d                                             3n+2 chia het cho d-->5(3n+2) chia het cho d

n chia het cho d                                                 5n+3 chia het cho d-->3(5n+3) chia het cho d

-> n+1-n chia het cho d                                 ->5(3n+2)-3(5n+3) chia het cho d

-> 1 chia het cho d                                        -> 15n+10-15n-9 chia het cho d

Va n va n+1 la hai so ngto cung nhau            - -> 1 chia het cho d

                                                                      Vay 3n+2 va 5n+3 chia het cho d

c) Goi d la UCLN (2n+1;2n+3)                                 d) Goi d la UCLN (2n+1;6n+5)

2n+1 chia het cho d                                                2n+1 chia het cho d-->3(2n+1) chiA het cho d

2n+3 chia het cho d--> 2n+1+2 chia het cho d          6n+5 chia het cho d

->2 chia het cho d                                               ->6n+5-3(2n+1) chia het cho d

--> d \(\in\)U (2)-> d\(\in\) {1;2}                                     -> 6n+5-6n-3 chia het cho d

d=2 loai vi 2n+1 khong chia het cho 2-> d=1         ->2 chia het  cho d

Vay 2n+1 va 2n+3 la hai so ng to cung nhau         --> d \(\in\)U (2)-> d\(\in\) {1;2} 

                                                                           d=2 loai vi 5n+3 k chia het cho 2-->d=1

                                                                       vay 2n+1 va 6n+5 la2 so ng to cung nhAU

 

Bình luận (0)
NT
7 tháng 3 2018 lúc 21:01

ngu het

Bình luận (0)
TQ
Xem chi tiết
NH
22 tháng 11 2015 lúc 21:26

gọi d là UC(2n+1;3n+1) 

ta có 2n+1 chia hết cho d=>3(2n+1) chia hết cho d hay 6n+3 chia hết cho d

3n+1 chia hết cho d =>2(3n+1) chia hết cho d hay 6n+2 chia hết cho d

(2n+1)-(3n+1) chia hết cho d=>(6n+3)-(6n+2) chia hết cho d hay 1 chia hết cho d

=> d thuộc U(1)={1}

=> d =1 

=> UCLN(2n+1;3n+1)=1=> 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau

tick nha!!!!!!!!!!

Bình luận (0)
NT
Xem chi tiết
LT
29 tháng 10 2016 lúc 11:39

m ở đâu

Bình luận (0)
NT
29 tháng 10 2016 lúc 11:42

Không biết thế này có đúng không nhưng mình vẫn muốn hỏi

Gọi d là WCLN(2n+3, 3m+4); n thuộc N

Ta có: 2n+3 chia hết cho d; 3m+4 chia hết cho d

3(2n+3) chia hết cho d; 2(3m+4) chia hết cho d

nên (6m+9-6n+8)

=> d chia hết cho 1

=> d=1

Bình luận (0)
BT
Xem chi tiết
LH
17 tháng 10 2021 lúc 15:47

L:

a) Gọi d là UCLN ( n ; n+1 )                    

n+1 chia hết cho d                                             

n chia hết cho d                                               

-> n+1-n chia hết cho d                                 

-> 1chia hết cho d

=>N và n+1 là 2 số nguyên tố cùng nhau

=>ĐPCM                                       

^HT^

Bình luận (0)
 Khách vãng lai đã xóa
BT
17 tháng 10 2021 lúc 15:50

cảm ỏn nha

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PD
26 tháng 11 2018 lúc 20:54

a) Gọi ƯCLN(4n+1;6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

<=> 12n + 3 - 12n -2 \(⋮\)d

<=> 3 - 2  \(⋮\)d  (trừ 12n)

<=> d = 1

Vậy ƯCLN(4n+1;6n+1) = 1 hay với mọi số tự nhiên n thì 4n+1 và 6n+1 là hai số nguyên tố cùng nhau

b) Gọi ƯCLN(5n+4;6n+5) = d

=>\(\hept{\begin{cases}5n+4⋮d\\6n+5⋮d\end{cases}}\)=>\(\hept{\begin{cases}6\left(5n+4\right)⋮d\\5\left(6n+5\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}30n+24⋮d\\30n+25⋮d\end{cases}}\)

<=>30n + 25 - 30n + 24 \(⋮\)d

<=>25 - 24 \(⋮\)(bỏ đi 30n)

<=> d = 1

Vậy ƯCLN(5n+4;6n+5) = 1 hay 5n + 4 và 6n + 5 là 2 số nguyên tố cùng nhau

Bình luận (0)
TT
Xem chi tiết
NA
Xem chi tiết
NT
25 tháng 11 2019 lúc 16:15

Ảnh đẹp thì

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
SL
25 tháng 10 2017 lúc 17:20

a) Gọi d là ƯCLN (n+1,3n+4), d thuộc N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,3n+4\right)=1\)

Vậy n+1 và 3n+4 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(2n+3,4n+8), d thuộc N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow\)d bằng 1 hoặc d bằng 2

Mà 2n+3 không chia hết cho 2 \(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

Vậy 2n+3 và 4n+8 là hai số nguyên tố cùng nhau.

Bình luận (0)
PC
24 tháng 1 2018 lúc 20:24
a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*) Ta có: ⎧ ⎨ ⎩ n + 1 ⋮ d 2 n + 3 ⋮ d ⇒ ⎧ ⎨ ⎩ 2 n + 2 ⋮ d 2 n + 3 ⋮ d {n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d ⇒ 2 n + 3 − ( 2 n + 2 ) ⋮ d ⇒2n+3−(2n+2)⋮d ⇒ 1 ⋮ d ⇒1⋮d => d = 1 => đpcm b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*) ta có: ⎧ ⎨ ⎩ 2 n + 3 ⋮ d 4 n + 8 ⋮ d ⇒ ⎧ ⎨ ⎩ 4 n + 6 ⋮ d 4 n + 8 ⋮ d {2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d ⇒ 4 n + 8 − ( 4 n + 6 ) ⋮ d ⇒4n+8−(4n+6)⋮d ⇒ 2 ⋮ d ⇒2⋮d ⇒ d ∈ { 1 ; 2 } ⇒d∈{1;2} Mà 2n + 3 là số lẻ => d = 1 => đpcm c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*) Ta có: ⎧ ⎨ ⎩ 3 n + 2 ⋮ d 5 n + 3 ⋮ d ⇒ ⎧ ⎨ ⎩ 15 n + 10 ⋮ d 15 n + 9 ⋮ d {3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d ⇒ 15 n + 10 − ( 15 n + 9 ) ⋮ d ⇒15n+10−(15n+9)⋮d ⇒ 1 ⋮ d ⇒1⋮d => d = 1 => đpcm Đúng Bình luận Báo cáo sai phạm Thu gọn
Bình luận (0)
TV
Xem chi tiết
DN
15 tháng 1 2018 lúc 18:13

Vì 21n + 4 và 14n + 3 là hai số nguyên tố cùng nhau .

=> ƯCLN ( 21n + 4 ; 14n + 3 ) = 1 

Gọi ƯCLN của hai số đó là d .

=> 21n + 4 chia hết cho d .

14n + 3 chia hết cho d .

=> 2 . ( 21n + 4 ) = 42n + 8 chia hết cho d.

3 . ( 14n + 3 ) = 42n + 9 chia hết cho d.

=> 42n + 9 - 42n + 8 chia hết cho d.

=> 1 chia hết cho d.

=> d = 1

Vậy 21n + 4 và 14n + 3 là hai số nguyên tố cùng nhau .

Bình luận (0)