Bài 10: Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
b) \(x^4-2x^3-x^2-2x+1\)
Bài 10: Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
b) \(x^4-2x^3-x^2-2x+1\)
\(x^4-2x^3-x^2-2x+1\)
\(=\left(x^4+x^3+x^2\right)-3x^3-3x^2-3x+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)-3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-3x+1\right)\)
Chúc bạn học tốt.
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định :
\(x^4-x^3-10x^2+2x+4\)
Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)
Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)
Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)
Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)
Giả sử:
\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)
Ta có:
\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)
\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)
dăm ba mấy câu này ko làm đc thì làm chó
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định: 2x^3 - 5x^2 - 9x - 3
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định: 2x^3 - 5x^2 - 9x - 3
phân tích đa thức thành nhân tử ( dùng phương pháp hệ số bất định ) 2x^2 + 2y^2 + 5xy + x - y - 1
phương pháp hệ số bất định rắc rôi chết
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định :
\(2x^4+3x^3-9x^2-3x+2\)
Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)
Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)
Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)
\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)
Dùng phương pháp hệ số bất định :
\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)
Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)
1. Phân tích đa thức thành nhân tử
B=(x-y)^3 + (y-z)^3 + (z-x)^3 ( phương pháp xét giá trị riêng)
2. Cho đa thức hãy phân tích Y thành tidch của 1 đa thức bậc nhất với 1 đa thức bậc 3 có hệ số nguyên sao cho hệ số cao nhất của đa thức bậc 3 là 1
Y= 3x^4 + 11x^3 - 7x^2 - 2x + 1 (pp dùng hệ số bất định)
Phân tích đa thức x^8+7x^4+1 thành nhân tử bằng phương pháp hệ số bất định
ak
x8 + -7x4 + -8 = 0 Reorder the terms: -8 + -7x4 + x8 = 0 Solving -8 + -7x4 + x8 = 0 Solving for variable 'x'. Factor a trinomial. (-1 + -1x4)(8 + -1x4) = 0
bn vui lòng làm ra từng bước cho mk dc ko???
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
2x^4-9x^3+4x^2+21x-18
Help me! Mai đi học rùi