1+5^2+5^4+...+5^200
G=1-5+5^2-5^3+5^4-.....-5^199-5^200
`G=1-5+5^{2}-5^{3}+5^{4}-...-5^{199}-5^{200}`
`5G=5-5^{2}+5^{3}-5^{4}+5^{5}-...-5^{200}-5^{201}`
`=>5G+G=1-2.5^{200}-5^{201}`
\(=>G=\dfrac{1-2.5^{200}-5^{201}}{6}\)
1+ \(5^2\) + \(5^3\) + \(5^4\) + ..... + \(5^{200}\)
tính tổng
Lời giải:
Gọi tổng trên là $K$
$K=1+5^2+5^3+5^4+...+5^{200}$
$5K=5+5^3+5^4+5^5+...+5^{201}$
$\Rightarrow 5K-K = 5+5^{201}-1-5^2$
$\Rightarrow 4K = 5^{201}-21$
$\Rightarrow K= \frac{5^{201}-21}{4}$
C = 1+5^2+5^4+.....+5^200
S= 1+5^2+5^4+....+5^200
Hồ Đại Tiến ngu đề là gì
S=1+52+54+…+5200
=>52.S=52+54+56+…+5202
=>25.S-S=52+54+56+…+5202-1-52-54-…-5200
=>24.S=5202-1
=>\(S=\frac{5^{202}-1}{24}\)
1+5^2+5^4+5^6+......+5^200 tính tổng
chán!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
C= 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +. . .+ 5 mũ 200
\(C=1+5^2+5^3+5^4+...+5^{200}\)
\(\Rightarrow C+5=1+5+5^2+5^3+5^4+...+5^{200}\)
\(\Rightarrow C+5=\dfrac{5^{200+1}-1}{5-1}\)
\(\Rightarrow C+5=\dfrac{5^{201}-1}{4}\)
\(\Rightarrow C=\dfrac{5^{201}-1}{4}-5\)
\(\Rightarrow C=\dfrac{5^{201}-21}{4}\)
tính tổng :S = 1+5^2+5^3+5^4+....+5^200
B=7-7^4+7^4-.....+7^301
A=1+5^2+5^4+5^6+......+5^200
S=1+5 mũ 2 + 5 mũ 4 +...+ 5 mũ 200
\(S=1+5+5^2+5^3+...+5^{200}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{201}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+...+5^{201}\right)-\left(1+5+5^2+...+5^{200}\right)\)
\(\Rightarrow4S=5^{201}-1\)
\(\Rightarrow S=\frac{5^{201}-1}{4}\)
\(S=1+5^2+...+5^{200}\)
\(5S=5+5^3+...+5^{201}\)
\(5S-S=\left(5+5^3+...+5^{201}\right)-\left(1+5^2+...+5^{200}\right)\)
\(4S=5+5^{201}-1+5^2\)
\(4S=5^{201}+29\)
\(S=\frac{5^{201}+29}{4}\)
\(S=1+5^2+5^4+...+5^{200}\)
\(25S=5^2+5^4+5^6+...+5^{202}\)
\(\Rightarrow25S-S=5^{202}-1\)
\(\Leftrightarrow S=\frac{5^{202}-1}{24}\)