Những câu hỏi liên quan
CY
Xem chi tiết
PN
Xem chi tiết
VT
Xem chi tiết
HT
25 tháng 10 2021 lúc 19:56

a,n=0;2;6;12;14;....

b,n=1

c,n=0

d,n=2;4;6;10;12;...

Bình luận (0)
DL
Xem chi tiết
NT
Xem chi tiết
HA
Xem chi tiết
NH
Xem chi tiết
H24
23 tháng 6 2021 lúc 9:51

`a in ZZ`

`=>6n-4 vdots 2n+1`

`=>3(2n+1)-7 vdots 2n+1`

`=>7 vdots 2n+1`

`=>2n+1 in Ư(7)={+-1,+-7}`

`=>2n in {0,-2,6,-8}`

`=>n in {0,-1,3,-4}`

`b in ZZ`

`=>3n+2 vdots 4n-4`

`=>12n+8 vdots 4n-4`

`=>3(4n-4)+20 vdots 4n-4`

`=>20 vdots 4n-4`

`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`

`=>4n-4 in {+-4,+-20}`

`=>n-1 in {+-1,+-5}`

`=>n in {0,2,6,-4}`

`c in ZZ`

`=>4n-1 vdots 3-2n`

`=>2(3-2n)-7 vdots 3-2n`

`=>7 vdots 3-2n`

`=>3-2n in Ư(7)={+-1,+-7}`

`=>2n in {4,0,-4,10}`

`=>n in {2,0,-2,5}`

Bình luận (2)
H24
23 tháng 6 2021 lúc 9:58

a) đk: \(n\ne\dfrac{-1}{2}\)

Để \(\dfrac{6n-4}{2n+1}\) nguyên

<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên

<=> \(3-\dfrac{7}{2n+1}\) nguyên

<=> \(7⋮2n+1\)

Ta có bảng 

2n+11-17-7
n0-13-4
 tmtmtmtm

 

b)đk: \(n\ne1\)

Để \(\dfrac{3n+2}{4n-4}\) nguyên

=> \(\dfrac{3n+2}{n-1}\) nguyên

<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên

<=> \(3+\dfrac{5}{n-1}\) nguyên

<=> \(5⋮n-1\)

Ta có bảng: 

n-11-15-5
n206-4
Thử lạitmloạitm

loại

 

c) đk: \(n\ne\dfrac{3}{2}\)

Để \(\dfrac{4n-1}{3-2n}\) nguyên

<=> \(\dfrac{4n-1}{2n-3}\) nguyên

<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên

<=> \(2+\dfrac{5}{2n-3}\) nguyên

<=> \(5⋮2n-3\)

Ta có bảng: 

2n-31-15-5
n214-1
 tmtmtmtm

 

Bình luận (0)

Giải:

a) \(\dfrac{6n-4}{2n+1}\)

Để \(\dfrac{6n-4}{2n+1}\) là số nguyên thì \(6n-4⋮2n+1\) 

\(6n-4⋮2n+1\) 

\(\Rightarrow6n+3-7⋮2n+1\) 

\(\Rightarrow7⋮2n+1\) 

\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

2n+1-7-117
n-4-103

Vậy \(n\in\left\{-4;-1;0;3\right\}\) 

b) \(\dfrac{3n+2}{4n-4}\) 

Để \(\dfrac{3n+2}{4n-4}\) là số nguyên thì \(3n+2⋮4n-4\)  

\(3n+2⋮4n-4\) 

\(\Rightarrow12n+8⋮4n-4\) 

\(\Rightarrow12n-12+20⋮4n-4\) 

\(\Rightarrow20⋮4n-4\) 

\(\Rightarrow4n-4\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\) 

Ta có bảng giá trị:

4n-4-20-10-5-4-2-112451020
n-4 (t/m)\(\dfrac{-3}{2}\) (loại)\(\dfrac{-1}{4}\) (loại)0 (t/m)\(\dfrac{1}{2}\) (loại)\(\dfrac{3}{4}\) (loại)\(\dfrac{5}{4}\) (loại)\(\dfrac{3}{2}\) (loại)2 (t/m)\(\dfrac{9}{4}\) (loại)\(\dfrac{7}{2}\) (loại)6 (t/m)

Vậy \(n\in\left\{-4;0;2;6\right\}\) 

c) \(\dfrac{4n-1}{3-2n}\) 

Để \(\dfrac{4n-1}{3-2n}\) là số nguyên thì \(4n-1⋮3-2n\)   

\(4n-1⋮3-2n\) 

\(\Rightarrow6-4n+1⋮3-2n\) 

\(\Rightarrow1⋮3-2n\) 

\(\Rightarrow3-2n\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

3-2n-11
n21

Vậy \(n\in\left\{1;2\right\}\) 

Chúc bạn học tốt!

Bình luận (0)
BS
Xem chi tiết
DA
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết