Cho A= { 3m +1 | m thuộc Z } và B= { 6n +4 | n thuộc Z }. CTR: B là con của A
Cho A= { 3m +1 | m thuộc Z } và B= { 6n +4 | n thuộc Z }. CTR: B là con của A
1) Tìm n thuộc Z sao cho:
a) 6n-1/9n-1 thuộc Z
b) n^2+6/n+4 thuộc Z
Giúp cai nka tối mik phải đi học
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Giúp cái nha chiều đi học rồi
Cho A =6n-1/3n+2
a;Tìm n thuộc Z để A thuộc Z.
b; n thuộc Z.Tìm giá trị nhỏ nhất của A
Lời giải:
a. Với $n$ nguyên, để $A$ nguyên thì $6n-1\vdots 3n+2$
$\Rightarrow 2(3n+2)-5\vdots 3n+2$
$\Rightarrow 5\vdots 3n+2$
$\Rightarrow 3n+2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow n\in \left\{-\frac{1}{3}; -1; 1; \frac{-7}{3}\right\}$
Do $n$ nguyên nên $n\in\left\{-1;1\right\}$
b.
\(A=\frac{2(3n+2)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để $A$ min thì $\frac{5}{3n+2}$ max
$\Rightarrow 3n+2$ phải là số nguyên dương bé nhất.
$3n+2>0\Rightarrow n> \frac{-2}{3}=-0,6666$
$\Rightarrow n$ nhỏ nhất là $0$
$\Rightarrow 3n+2$ nhỏ nhất bằng 2.
Khi đó: $A_{\min}=2-\frac{5}{3.0+2}=\frac{-1}{2}$
cho phân số:M=6n-1/3n-2
a)Tìm n để phân số M là số nguyên (n thuộc Z)
b)Tìm n để M có giá trị nhỏ nhất (n thuộc Z)
1,Cho 4 số a,b,c,d thỏa mãn a+b+c+d = 0.
CMR: a^3+b^3+c^3=3(b+d)(ac-bd)
2, CMR:
a, n^4+6n^3+11n^2+6n chia hết cho 24 với mọi n thuộc Z
b,( m+1)(m+3)(m+5)(m+7)+15 chia hết cho m+6 với mọi m thuộc Z
Các bác giúp em với thứ 7 em phải nộp rồi
Cho A = \(\frac{6n-2}{3n+1}\); B = \(\frac{2n+1}{3n-1}\)
a ) Tìm n thuộc Z để A thuộc Z ; B thuộc Z
b) Tìm n thuộc Z để A;B lớn nhất ; A;B nhỏ nhất
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
cho p/s A=6n-1/ 3n+2
a) tìm n thuộc Z để A thuộc Z
b tìm n thuộc z để A có GTNN
Để A thuộc Z => 6n - 1 chia hết 3n + 2
=> 2(3n+2) - 5 chia hết 3n + 2
=> 5 chia hết 3n + 2
=> 3n + 2 thuộc Ư(5)=.............
=> ............Còn lại tự làm nha!