Số nghiệm nguyên của bất phương trình \(\sqrt{5-2x}\)\(\le4\)
Tâp nghiệm nguyên của bất phương trình \(\sqrt{5x-2}\le4\) là S={..........}
\(\sqrt{5x-2}\le4\left(DK:x\ge\frac{2}{5}\right)\)
\(\Leftrightarrow5x-2\le16\Leftrightarrow5x\le18\Leftrightarrow x\le\frac{18}{5}\)
Vì \(x\in Z\)nên ta có : \(1\le x\le3\)
Vậy : Tập nghiệm nguyên của bất phương trình ; \(S=\left\{1;2;3\right\}\)
\(\sqrt{5x-2}\le4\left(DK:x\ge\frac{2}{5}\right)\)
\(\Leftrightarrow5x-2\le16\Leftrightarrow5x\le18\Leftrightarrow x\le\frac{18}{5}\)
Vì \(x\in Z\)nên ta có \(1\le x\le3\)
Vậy........................
cho \(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\) số nghiệm nguyên của bất phương trình là:
giải giúp em với ạ
\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)
⇔ \(\sqrt{x+3}>\sqrt{7-x}+\sqrt{2x-8}\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\x+3>7-x+2x-8+2\sqrt{\left(7-x\right)\left(2x-8\right)}\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\x+3>x-1+2\sqrt{\left(7-x\right)\left(2x+8\right)}\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\4>2\sqrt{\left(7-x\right)\left(2x+8\right)}\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\\sqrt{\left(7-x\right)\left(2x-8\right)}< 2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\-2x^2+22x-56< 2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\\left[{}\begin{matrix}x>\dfrac{11+\sqrt{5}}{2}\\x< \dfrac{11-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}4\le x< \dfrac{11-\sqrt{5}}{2}\\\dfrac{11+\sqrt{5}}{2}< x\le8\end{matrix}\right.\)
Các giá trị nguyên của x thỏa mãn là S = {4 ; 7 ; 8}
Ấy chết sai điều kiện XĐ rồi, bạn sửa lại điều kiện thôi nhé
1.Tập các giá trị nguyên của x để biểu thức \(\sqrt{x-1}-\frac{x}{\sqrt{1-x}}\) xác định.
2.Tập nghiệm nguyên của bất phương trình: \(\sqrt{5x-2}\le4\).
Cho bất phương trình:
-4\(\sqrt{\left(4-x\right)\left(2+x\right)}\le x^2-2x+a-18\)
Tìm a để bất phương trình nghiệm đúng với mọi x, \(-2\le x\le4\)
tìm nghiệm nghuyên nhỏ nhất của bất phương trình \(\sqrt{5x-2}\le4\)
Có bao nhiêu giá trị nguyên của tham số m để phương trình log 2 x 2 - 2 x + 5 - m log x 2 - 2 x + 5 = 5 có hai nghiệm phân biệt là nghiệm của bất phương trình log 2017 x + 1 - log 2017 x - 1 > log 2017 4
A. 0
B. 1
C. 3
D. 2
Chọn A.
Phương pháp :
Cách giải : Trước hết ta giải biện luận phương trình
Vậy không có giá trị nguyên nào của m thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số m để phương trình log 2 x 2 - 2 x + 5 - m log x 2 - 2 x + 5 2 = 5 có hai nghiệm phân biệt là nghiệm của bất phương trình log 2017 x + 1 - log 2017 x - 1 > log 2017 4
A. 0
B. 1
C. 3
D. 2
Cho bất phương trình bậc nhất hai ẩn: -3x + y < 4
a) Biểu diễn miền nghiệm của hệ bất phương trình đã cho trên mặt phẳng tọa độ
b) Từ đó suy ra miền nghiệm của bất phương trình -3x + y \(\le4\)
Cho bất phương trình: 2 x - 13 > 8 9 . Số các nghiệm nguyên của bất phương trình là:
A. 2
B. 3
C. 4
D. 5
Đáp án C
Do đó; số các nghiệm nguyên của x là 11;12;14;15