Những câu hỏi liên quan
ND
Xem chi tiết
LP
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Bình luận (0)
KN
Xem chi tiết
KN
9 tháng 10 2020 lúc 20:57

\(ĐK:-3\le x\le6\)

Đặt \(t=\sqrt{x+3}+\sqrt{6-x}\left(t>0\right)\Rightarrow t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\frac{t^2-9}{2}\)

Phương trình trở thành \(t-\frac{t^2-9}{2}=3\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left(t-3\right)\left(t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\left(tm\right)\\t=-1\left(L\right)\end{cases}}\)    

Với t = 3 thì \(\sqrt{x+3}+\sqrt{6-x}=3\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=0\Rightarrow\orbr{\begin{cases}x=6\\x=-3\end{cases}}\left(tm\right)\)  

Vậy phương trình có tập nghiệm S = {6; -3}

           

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
PB
Xem chi tiết
TQ
Xem chi tiết
NH
Xem chi tiết
LH
27 tháng 10 2018 lúc 16:21

ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}=a;\sqrt{6-x}=b\left(a,b\ge0\right)\),ta có

\(\hept{\begin{cases}a+b-ab=3\left(1\right)\\a^2+b^2=9\end{cases}\Rightarrow\hept{\begin{cases}2a+2b-2ab=6\\\left(a+b\right)^2-2ab=9\end{cases}}}\)

\(\Rightarrow\left(a+b\right)^2-2\left(a+b\right)=3\Rightarrow\left(a+b\right)^2-2\left(a+b\right)-3=0\)

\(\Rightarrow\left(a+b-3\right)\left(a+b+1\right)=0\)

Do \(a,b\ge0\)nên a+b+1>0

\(\Rightarrow a+b-3=0\)\(\Rightarrow a+b=3\)thay vào (1) ta được \(ab=0\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}}\)hoặc \(\hept{\begin{cases}a=3\\b=0\end{cases}}\)

Sau đó bn tự thay vào rồi giải tiếp nhé

Bình luận (0)
LV
Xem chi tiết
CH
29 tháng 9 2017 lúc 10:17

Đặt \(t=\sqrt[3]{x+6}\Rightarrow x+6=t^3\Rightarrow x=t^3-6\)

Phương trình trở thành \(x^3-\sqrt[3]{6+t}=6\)

Tiếp tục đặt \(h=\sqrt[3]{6+t}\Rightarrow t=h^3-6\)

Phương trình trở thành \(x^3-h=6\Rightarrow h=x^3-6\)

Từ đó ta có hệ 3 ẩn hoán vị vòng quanh \(\hept{\begin{cases}x=t^3-6\\t=h^3-6\\h=x^3-6\end{cases}}\)

Do x, t và h bình đẳng trong hệ trên nên ta giả sử x = min {x ; t; h}

Do \(x\le t;x\le h\Rightarrow\hept{\begin{cases}t^3-6\le h^3-6\\t^3-6\le x^3-6\end{cases}}\Rightarrow\hept{\begin{cases}t\le h\\t\le x\end{cases}}\)

Suy ra x = t = h.

Phương trình trở thành \(x=x^3-6\Rightarrow x^3-x-6=0\Rightarrow x=2.\) 

Vậy phương trình có nghiệm x = 2.

Bình luận (0)
LV
28 tháng 9 2017 lúc 21:08
ai lm giúp mình vs, = 6 thui nhá
Bình luận (0)
NH
Xem chi tiết
CH
22 tháng 9 2016 lúc 15:57

ĐK: \(-3\le x\le6.\)

Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=9\\a+b-ab=3\end{cases}\Rightarrow}\hept{\begin{cases}\left(a+b\right)^2-2ab=9\\\left(a+b\right)-ab=3\end{cases}}}\)

Đặt \(\hept{\begin{cases}a+b=u\\ab=v\end{cases}\left(u,v\ge0\right)\Rightarrow\hept{\begin{cases}u^2-2v=9\\u-v=3\end{cases}\Rightarrow}\hept{\begin{cases}u^2-2u-3=0\\v=u-3\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}u=3\\v=0\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}}}\)

Th1: \(\hept{\begin{cases}a=3\\b=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=3\\\sqrt{6-x}=0\end{cases}\Rightarrow}x=6\left(tmđk\right).}\)

Th2: \(\hept{\begin{cases}a=0\\b=3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=0\\\sqrt{6-x}=3\end{cases}\Rightarrow}x=-3}\left(tmđk\right).\)

Vậy x = 6 hoặc x = -3.

Bình luận (0)
TD
21 tháng 9 2016 lúc 21:39

kết quả phương trình là x=6

Bình luận (0)
VS
Xem chi tiết
AN
11 tháng 9 2018 lúc 16:47

Đặt \(\hept{\begin{cases}\sqrt[6]{x-3}=a\\\sqrt[6]{x-7}=b\end{cases}}\)

\(\Rightarrow a^2+b^2-6ab=0\)

Dễ thây a  = 0 không là nghiệm.

Đặt \(b=ta\)

\(\Rightarrow a^2+t^2a^2-6ta^2=0\)

\(\Leftrightarrow t^2-6t+1=0\)

Làm nôt

Bình luận (0)