Những câu hỏi liên quan
HM
Xem chi tiết
VG
22 tháng 12 2021 lúc 16:14

a, Với x ≠ 0,x ≠ ± 5 và x ≠ 5/2 thì 
P = [x/(x^2 - 25)  -  (x - 5)/(x^2 + 5x)]  : (2x - 5)/(x^2 + 5x) + x/(x - 5)
<=>P = [x/(x - 5)(x + 5)  -  (x - 5)/x(x+5)] . x(x + 5)/(2x - 5) + x/(x - 5)
=> P = [x^2 - (x - 5)^2]/x(x - 5)(x + 5) . x(x + 5)/(2x - 5) + x/(x - 5)
<=> P = (x - x + 5)(x + x - 5)/(x - 5)(2x - 5) + x/(x - 5)
<=> P = 5(2x - 5)/(x - 5)(2x - 5) + x/(x - 5)
<=> P = 5/(x - 5) + x/(x - 5)
<=> P = (5 + x)/(x - 5)
b, Với x ≠ 0,x ≠ ± 5 và x ≠ 5/2 (x ∈ Z) thì P ∈ Z <=> (5 + x)/(x - 5) ∈ Z
<=> (x - 5 + 10)/(x - 5) ∈ Z
<=> 1 + 10/(x - 5) ∈ Z
<=> 10/(x - 5) ∈ Z
<=> (x - 5) ∈ Ư(10)
<=> x - 5 = 10  <=> x = 15 (TM)
hoặc x - 5 = -10 <=> x = -5  (TM)
hoặc x - 5 = 5  <=> x = 10  (TM)
hoặc x - 5 = -5 <=> x = 0  (TM)
hoặc x - 5 = 2  <=> x = 7  (TM)
hoặc x - 5 = -2  <=> x = 3  (TM)
hoặc x - 5 = -1  <=> x = 4  (TM)
hoặc x - 5 = 1  <=> x = 6  (TM)
Vậy x ∈ {-5,0,3,4,6,7,10,15} thì P ∈ Z

Bình luận (0)
TQ
Xem chi tiết
KN
Xem chi tiết
NL
Xem chi tiết
NK
Xem chi tiết
CB
Xem chi tiết
VO
Xem chi tiết
TV
Xem chi tiết
RR
13 tháng 5 2018 lúc 12:34

a) Với x = 25 thì \(N=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)

b) Ta có   \(M=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\)

\(M=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)

Suy ra \(S=M.N=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

Bình luận (0)
HQ
Xem chi tiết
NT
8 tháng 12 2016 lúc 21:47

x là 3; y là 6

Bình luận (0)