Tìm x e Z để các số hữu tỉ sau là số nguyên :
a) F=3x-2/x+3
b) x^2-2x+4/x+1
ai giúp tui với
Tìm x để các số hữu tỉ là các số nguyên :
f = 3x-2/x+3
g = x^22-2x+4/x+1
tìm A thuộc z để các số hữu tỉ sau là số nguyên A=x+2/x+1
\(A=\dfrac{x+2}{x+1}=1+\dfrac{1}{x+1}\)
Để A nguyên :
\(x+1\inƯ\left(1\right)\\ Ư\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow\left\{{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Tìm x thuộc Z để các số hữu tỉ sau là số nguyên: x^2 - 2x cộng 4 /x cộng1
giúp mình giải bài này với
Tìm số nguyên a để số hữu tỉ sau là một số nguyên
a) x=\(\frac{a+1}{a+9}\)
b) x=\(\frac{a-1}{a+4}\)
Tìm số nguyên x để số hữu tỉ sau là 1 số nguyên
a) t=\(\frac{3x-8}{x-5}\)
b) q=\(\frac{2x+1}{x-3}\)
c) p=\(\frac{3x-2}{x+3}\)
Chứng tỏ số hữu tỉ x=\(\frac{2m+9}{14m+62}\)là phân số tối giản, với moi m\(m\varepsilon N\)
Bài 1:
a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)
Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)
b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)
Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Vậy \(a\in\left\{-9;-5;-3;1\right\}\)
Bài 2:
a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-2;4;6;12\right\}\)
b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)
Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-4;2;4;10\right\}\)
c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)
Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)
Bài 3:
Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản
tìm số nguyên x để các p/s sau là số nguyên :
a, 31/x-1
b, -3/x-1
c, -4/2x-1
d, x+3/x-2
e, 3x+7/x-1
f, 4x-1/3-x
a) Để \(\frac{31}{x-1}\)là số nguyên thì 31 chia hết cho x-1
x nguyên => x-1 nguyên => x-1 thuộc Ư (31)={-31;-1;1;31}
Ta có bảng
x-1 | -31 | -1 | 1 | 31 |
x | -30 | 0 | 2 | 32 |
b)c) Làm tương tự
d) \(\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
Để \(\frac{x+3}{x-2}\)nguyên thì \(\frac{5}{x-2}\)nguyên
x nguyên => x-2 nguyên
=> x-2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
x-2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
e)f) Phân tích làm tương tự
Giải hộ mik phần này nhé
c) \(\frac{-2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{-7}{6}\)
Bài 2: Tìm x thuộc Z Để các số hữu tỉ sau là số nguyên
a) F=\(\frac{3x-2}{x+3}\) b)G= \(\frac{x^2-2x+4}{x+1}\)
Bài làm:
c) \(-\frac{2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=-\frac{7}{6}\)
\(\Leftrightarrow-\frac{2}{5}+\frac{5}{2}-\frac{4}{9}x=-\frac{7}{6}\)
\(\Leftrightarrow\frac{4}{9}x=-\frac{2}{5}+\frac{5}{2}+\frac{7}{6}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{49}{15}\)
\(\Leftrightarrow x=\frac{49}{15}\div\frac{4}{9}\)
\(\Rightarrow x=\frac{147}{20}\)
Vậy \(x=\frac{147}{20}\)
Bài 2:
a) Ta có: \(F=\frac{3x-2}{x+3}=\frac{\left(3x+9\right)-11}{x+3}=3-\frac{11}{x+3}\)
Để F nguyên \(\Rightarrow\frac{11}{x+3}\inℤ\Leftrightarrow x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow x\in\left\{-14;-4;-2;8\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)thì F nguyên
2b) Tách
\(G=\frac{x^2-2x+4}{x+1}=\frac{x^2+x-3x-3+7}{x+1}=\frac{x\left(x+1\right)-3\left(x+1\right)+7}{x+1}\)
\(=\frac{x\left(x+1\right)}{x+1}-\frac{3\left(x+1\right)}{x+1}+\frac{7}{x+1}=x-3+\frac{7}{x+1}\)
G là số nguyên <=> \(\frac{7}{x+1}\)là số nguyên <=> \(7⋮x+1\)<=> \(x+1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
<=> \(x\in\left\{0;-2;6;-8\right\}\)
Tìm x e Z để số hữu ti sau là số nguyên
x^2-2x+4/x+1
Giúp mình với
\(x^2-2x+\frac{4}{x}+1\)
\(=\left(x^2-2x+1\right)+\frac{4}{x}\)
\(=\left(x-1\right)^2+\frac{4}{x}\)
Để biểu thức trên là số nguyên thì \(x\inƯ\left(4\right)\)
=> x= {-4;-2;-1;1;2;4}
Tìm x thuộc Z để các số hữ tỷ sau là số nguyên
a) F=3z-2/ x+3
b) B=x ngũ 2 -2x=4/ x+1
mình ghi hơi nhầm câu ạ là 3x nhé mn. Cảm ơn
Tìm x thuộc Z để các số hữu tỉ sau là số nguyên:\(\frac{x\left(x-2\right)+4}{x+1}\)