Những câu hỏi liên quan
NL
Xem chi tiết
H24
14 tháng 5 2016 lúc 17:07

gọi d là UCLN(21n+4;14n+3)

ta có:

[3(14n+3)]-[2(21n+4)]chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản

Bình luận (0)
LA
14 tháng 5 2016 lúc 17:04

gọi ƯCLN (21n+4;14n+3)=d

=> 21n+4 chia hết cho d

     14n+3 chia hết cho d

=> 42n+8 chia hết cho d

     42n+9 chia hết cho d

=> 1chia hết cho d

=> d=1

=>\(\frac{21n+4}{14n+3}\)là phân số tối giản.(đpcm)

(hình như đây là toán lớp 6 thì phải:D)

Bình luận (0)
TP
Xem chi tiết
VS
23 tháng 3 2017 lúc 17:52

Gọi d là ƯCLN (21n+4;14n+3)

\(\Rightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

\(\Rightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)=1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4;14n+3\right)=1\)

\(\Rightarrow\frac{21n+4}{14n+3}\)tối giản

Vậy: Với mọi số tự nhiên n thì \(\frac{21n+4}{14n+3}\) tối giản

Bình luận (0)
BS
Xem chi tiết
DA
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
H24
9 tháng 8 2023 lúc 8:32

Gọi \(\text{ƯCLN(21n+4,14n+3)}\) là \(\text{d}\)

\(\Rightarrow\) \(\text{21n+4 ⋮ d}\)

\(\text{14n+3 ⋮ d}\)

\(\Rightarrow\) \(\text{[3(14n+3)-2(21n+4) ⋮ d}\)

\(\Rightarrow\) \(\text{[42n+9-42n-8] ⋮ d}\)

\(\Rightarrow\) \(\text{1 ⋮ d}\)

\(\Rightarrow\) \(\text{d =1( đpcm )}\)

 

Bình luận (0)
CA
Xem chi tiết
GN
21 tháng 12 2018 lúc 16:22

( 21n + 4 , 19n +3 ) 

Gọi d thuộc ƯC ( 21n +4, 19n +3 ) 

=> 21n + 4  chia hết cho d

     19n+3    chia hết cho d

=> 21. ( 19n+3) - 19. ( 21n +4 ) chia hết cho d 

=> 399n + 63 - 399n + 76 

=> 13 

( mình chỉ làm đc đến đây thôi , xin lỗi bạn )

Bình luận (0)
NA
11 tháng 4 2021 lúc 14:51

Làm tiếp theo của bạn Gia Hân Nguyễn nha:

Vì 13 chia hết cho d suy ra d thuộc các số 1,13

mà 13 là SNT suy ra(21n+4,19n+3)=1

Bình luận (0)
 Khách vãng lai đã xóa
LG
Xem chi tiết
TL
24 tháng 8 2015 lúc 19:01

gọi d là ƯCLN của 21n+4 và 14n+3

=> 21n+4 chia hết cho d  =>2.(21n+4) chia hết cho d

     14n+3 chia hết cho d  =>3.(14n+3) chia hết cho d

=> (42n+9)-(42n+8) chia hết cho d

=> 42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=> d thuộc Ư(1)={1}

=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)

Bình luận (0)
NT
27 tháng 1 2017 lúc 22:31

Khó nhỉ

Bình luận (0)
NT
29 tháng 1 2017 lúc 0:12

ĐPCM là gì

Bình luận (0)
H24
Xem chi tiết
TN
20 tháng 5 2016 lúc 17:17

gọi d là UCLN (21n+4;14n+3)

ta có:

[3(14n+3]-[2(21n+4)] chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản vs mọi n

Bình luận (0)
ND
15 tháng 7 2021 lúc 16:15

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

Bình luận (0)
 Khách vãng lai đã xóa
NB
Xem chi tiết
ST
16 tháng 4 2017 lúc 18:34

Gọi d là UCLN(21n + 4,14n+3) 

Ta có: 21n + 4 chia hết cho d => 2(21n + 4) chia hết cho d => 42n + 8 chia hết cho d

          14n + 3 chia hết cho d => 3(14n + 3) chia hết cho d => 42n + 6 chia hết cho d

=> 42n + 8 - (42n + 6) chia hết cho d

=> 2 chia hết cho d => d = {1;2}

Mà 14n + 3 lẻ => d lẻ => d khác 2 => d = 1

=> UCLN(21n+4,14n+3) = 1

Bình luận (0)
CD
1 tháng 1 2019 lúc 16:57

Sai rồi bn

Bình luận (0)
NH
24 tháng 2 2020 lúc 9:42

sai

42n+9 mới đúng

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết