tìm GTNN
E= 25x^2 + 3y^2 - 10y + 20
Tìm giá trị nhỏ nhất của biểu thức B=25x^2+3y^2-10y+11
\(B=25x^2+3y^2-10y+11\)
\(=25x^2+3\left(y^2-\frac{10}{3}y+\frac{11}{3}\right)\)
\(=25x^2+3\left(y^2-2.y.\frac{5}{3}+\frac{25}{9}+\frac{8}{9}\right)\)
\(=25x^2+3\left(y-\frac{5}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Đẳng thức xảy ra khi x = 0; y = 5/3
Vậy...
\(-25x^6-y^8+10y^3y^4\)
Ta có:
\(-25x^6-y^8+10x^3y^4\)
\(=-\left[\left(5x^3\right)^2-10x^3y^4+\left(y^4\right)^2\right]\)
\(=-\left(5x^3-y^4\right)^2\)
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
\(E=x^2+2y^2-2xy+2x-10y\)
\(E=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-17\)
\(E=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-17\)
\(E=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y-1\\y=4\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy \(Min_E=-17\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
tim x,y thoa man: x^2+3y^2+20 =2x(1+y)+10y
tìm giá trị nhỏ nhất của các biểu thức sau
a,A=25x2+3y2-10y=11
b,B=(2x-1)2+(x+2)2
c,(x-3)2+(x-11)2
a) Sửa đề \(A=25x^2+3y^2-10x+11\)
\(A=25x^2-10x+1+3y^2+10\)
\(A=\left(5x-1\right)^2+3y^2+10\)
Vì \(\left(5x-1\right)^2\ge0\) với mọi x
\(3y^2\ge0\) với mọi y
\(\Rightarrow\left(5x-1\right)^2+3y^2\ge0\) với mọi x,y
\(\Rightarrow\left(5x-1\right)^2+3y^2+10\ge10\)
Amin = 10
\(\Leftrightarrow5x-1=0\) và \(3y^2=0\)
\(\Rightarrow5x=1\) và \(y^2=0\)
\(\Rightarrow x=\dfrac{1}{5}\) và \(y=0\)
Vậy Amin = 10 <=> x = 1/5 và y = 0
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(\Rightarrow B=4x^2-4x+1+x^2+4x+4\)
\(\Rightarrow B=5x^2+5\)
Vì \(5x^2\ge0\) với mọi x
\(\Rightarrow5x^2+5\ge5\)
=> Bmin = 5
<=> 5x2 = 0
=> x2 = 0
=> x = 0
Vậy Bmin = 5 <=> x = 0
c) \(C=\left(x-3\right)^2+\left(x-11\right)^2\)
\(C=x^2-6x+9+x^2-22x+121\)
\(C=2x^2-28x+130\)
\(C=2\left(x^2-14x+65\right)\)
\(C=2\left(x^2-2.x.7+7^2+16\right)\)
\(C=2\left(x-7\right)^2+16.2\)
\(C=2\left(x-7\right)^2+32\)
Vì \(2\left(x-7\right)^2\ge0\) với mọi x
=> \(2\left(x-7\right)^2+32\ge32\)
=> Cmin = 32
<=> x - 7 = 0 => x = 7
Vậy Cmin = 32 <=> x = 7