Cho hình vẽ sau: a) chứng minh: AC//BD,b)tính góc D1
Cho hình vẽ sau và cho biết: AB\(\perp\)AC tại A ; AB\(\perp\)BD tại B ; góc C1=60 độ
a) Chứng minh hai đường thẳng AC và BD song song
b) Tính số đo các góc C2; D1; D2
c) Vẽ Cx là tia phân giác của C2, vẽ Dy là tia phân giác của D2; vẽ Dz là tia phân giác của D1. Chứng minh rằng Cx\(\perp\)Dz
cho hình vẽ , biết góc C1 =70 độ
a chứng tỏ AC//BD
b Tính số đo do góc của D1
Gọi Dy và Cx lần lượt là tia phân giác của góc CDm và góc ACD
chứng minh Cx //Dy
cho hình thang ABCD (AB//CD) có góc BAD=góc CBD . BIẾT AB=4cm , DC=9cm
a) chứng minh tam giác ABD đồng dạng với tam giác BDC . Tính BD
b) vẽ BE//AD cắt AC tại F . Chứng minh AB.AD=DC.BE
c) vẽ AF//BC cắt BD tại F . Chứng minh EF//DC
Cho hình thang ABCD có góc BAD = góc CBD. Biết AB = 4cm; DC = 9cm.
a) Chứng minh tam giác ABD ~ tam giác BDC. Tính BD
b) Vẽ BE // AD cắt AC tại E. Chứng minh AB.AD = DC.BE
c) Vẽ À // BC cắt BD tại F. Chứng minh EF // DC
a, Xét tam giác ABD và tam giác BDC ta có :
^BAD = ^CBD ( gt )
^ABD = ^BDC ( so le trong )
Vậy tam giác ABD ~ tam giác BDC ( g.g )
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\)( tỉ số đồng dạng ) \(\Rightarrow BD^2=AB.DC=4.9=36\)
\(\Rightarrow BD=\sqrt{36}=6\)cm
b, Gọi giao điểm AC và BD là I
Xét tam giác BIE và tam giác AID có : BE // AD
Theo hệ quả Ta lét ta có : \(\frac{BI}{ID}=\frac{IE}{IA}=\frac{BE}{AD}\)
Xét tam giác AIB và tam giác DIC có AB // CD ( ABCD là hình thang )
\(\frac{AI}{IC}=\frac{IB}{ID}=\frac{AB}{DC}\)
mà \(\frac{BE}{AC}=\frac{AB}{DC}=\frac{IB}{ID}\Rightarrow BE.DC=AB.AC\)
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b, Xét Δ ABD và Δ EBD, có :
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))
\(\widehat{BAD}=\widehat{BED}=90^o\)
BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)
=> AB = AE
Xét Δ ABE, có :
AB = AE (cmt)
=> Δ ABE cân tại E
Ta có :
Δ ABE cân tại E
BD là tia phân giác của \(\widehat{ABE}\))
=> BD là đường trung trực của AE
c, Ta có : Δ ABD = Δ EBD (cmt)
=> AD = ED
Trong Δ CED, cạnh huyền DC là cạnh lớn nhất
=> ED < DC
Mà AD = ED (cmt)
=> AD < DC
cho hình vẽ,biết A1=B1=85 C1=120 a) chứng minh a//b b) Tính C2 và D1 c) vẽ tia phân giác Cx của góc cắt ACD tại I .Tính góc CDI
Cho hình vẽ biết: a vuông góc với AB, b vuông góc với AB a) Vẽ lại hình và ghi GT, KL b) Chứng minh: a//b c) Biết C1 = 62 độ. Tính D1, D2
Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE vuông góc với BC tại E.
a) Cho biết AB = 6cm, AC = 8cm. Tính BC.
b) Chứng minh tam giác DAE cân.
c) Chứng minh rằng DA < DC.
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
1. Cho hình thang ABCD có góc A = góc D = 90 độ , đáy nhỏ AB = a , cạnh bên BC = 2 a . Gọi M , N lần lượt là trung điểm AD , AB
a / Tính số đo các góc ABC , BAN
b/ Chứng minh tam giác NAD đều
c/ Tính MN theo a
2. a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
3. Cho tứ giác ABCD :
a/ Chứng minh rằng AB + CD < AC + BD
b/ Cho biết AB + BD < hoặc = AC + CD
Chứng minh rằng AB < AC
4. Cho hình thang ABCD có AC vuông góc BD . CHứng minh rằng :
a/ AB^2 + CD^2 = AD^2 + BC^2
b/ ( AB + CD )^2 = AC^2 + BD^2
bạn hỏi thế này thì chả ai muốn làm -_- dài quá
Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!
dài quà làm sao mà có thòi gian mà trả lời .bạn hỏi ít thoi chứ