Những câu hỏi liên quan
HN
Xem chi tiết
HN
Xem chi tiết
NN
Xem chi tiết
NC
10 tháng 6 2020 lúc 9:37

Bạn xem lại đề bài!

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\)

\(=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
CP
Xem chi tiết
NM
11 tháng 10 2021 lúc 11:26

\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)

Bình luận (0)
LL
11 tháng 10 2021 lúc 11:26

a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)

\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)

b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

Bình luận (0)
ND
Xem chi tiết
DA
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Bình luận (0)
 Khách vãng lai đã xóa
DC
26 tháng 11 2021 lúc 19:30

???????????????????
 

Bình luận (0)
 Khách vãng lai đã xóa
PV
Xem chi tiết
LT
Xem chi tiết
PB
Xem chi tiết
CT
3 tháng 8 2018 lúc 12:12

a, Xét các dạng của n khi chia cho 2: n = 2k; n = 2k+1(k ∈ N)

+) Nếu n = 2k

(n+2)(n+5) = (2k+2)(2k+5) = 2(2k+1)(2k+5) ⋮ 2

+) Nếu n = 2k+1

(n+2)(n+5) = (2k+3)(2k+6) = 2(2k+3)(k+3)2

Vậy được điều phải chứng minh.

b, c, Tương tự với các TH: n = 3k; n = 3k+1; n = 3k+2(kN) 

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 4 2018 lúc 15:55
Bình luận (0)