Chứng minh rằng:
Nếu \(x=\dfrac{-b+\sqrt{b^2-4ac}}{2}\)thì \(x^2+bx+c=0\)
Chứng minh rằng: Nếu \(x=\frac{-b+\sqrt{b^2-4ac}}{2}\)thì \(x^2+bx+c=0\)
câu hỏi hay......nhưng tui xin nhường cho các bn khác
Hãy tích đúng cho tui nha
THANKS
Đối với phương trình `ax^2 +bx +c=0` \(\left(a\ne0\right)\) và biệt thức \(\Delta=b^2-4ac\)
`-` Nếu \(\Delta>0\) thì phương trình có hai nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a};x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
`-` Nếu \(\Delta=0\) thì phương trình có nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)
`-` Nếu \(\Delta< 0\) thì phương trình vô nghiệm
Theo kết luận trên áp dụng với bài sau đây :
`a, 7x^2 -2x+3=0`
`b,6x^2 +x+5=0`
`c, 6x^2 +x-5=0`
`a) 7x^2 - 2x + 3 = 0`
`(a = 7; b = -2; c = 3)`
`Δ = b^2 - 4ac = (-2)^2 - 4.7.3 = -80 < 0`
`=>` phương trình vô nghiệm
`b) 6x^2 + x + 5 = 0`
`(a = 6;b = 1;c = 5)`
`Δ = b^2 - 4ac = 1^2 - 4.6.5 = -119 < 0`
`=>` phương trình vô nghiệm
`c) 6x^2 + x - 5 = 0`
`(a = 6;b=1;c=-5)`
`Δ = b^2 - 4ac = 1^2 - 4.6.(-5) = 121 > 0`
`=>` phương trình có 2 nghiệm phân biệt
`x_1 = (-b + sqrt{Δ})/(2a) = (-1+ sqrt{121})/(2.6) = (-1+11)/12 = 10/12 = 5/6`
`x_2 = (-b - sqrt{Δ})/(2a) = (-1- sqrt{121})/(2.6) = (-1-11)/12 = -12/12 = -1`
Vậy phương trình có 1 nghiệm `x_1 = 5/6; x_2 = -1`
ủa, mấy bài đó tương tự như ct mà:
\(7x^2-2x+3=0\) \(\left\{{}\begin{matrix}a=7\\b=-2\\c=3\end{matrix}\right.\)
\(\Delta=b^2-4ac=\left(-2\right)^2-4.7.3=-80\)
Vì \(\Delta< 0\) \(\Rightarrow\) pt vô nghiệm
a)
`7x^2 -2x+3=0`
có \(\Delta=b^2-4ac=\left(-2\right)^2-4\cdot7\cdot3=-80< 0\)
=> phương trình vô nghiệm
b)
`6x^2 +x+5=0`
có \(\Delta=b^2-4ac=1^2-4\cdot6\cdot5=-119< 0\)
=> phương trình vô nghiệm
c)
`6x^2 +x-5=0`
có \(\Delta=b^2-4ac=1^2-4\cdot6\cdot\left(-5\right)=121>0\)
\(=>x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-1+\sqrt{121}}{2\cdot6}=\dfrac{5}{6}\)
\(=>x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-1-\sqrt{121}}{2\cdot6}=-1\)
Câu 2.Cho x =\(\dfrac{1}{a}\sqrt{\dfrac{2a-b}{b}}\) (a>b>0).Chứng minh biểu thức sau là số nguyên
P=\(\dfrac{1-ax}{1-bx}\sqrt{\dfrac{1+bx}{1-b}}\)
Chứng minh rằng nếu a - b + c = 0 thì x = - 1 là một nghiệm của đa thức ax^2 + bx + c
Xét đa thức: P(x)=ax2+bx+c. Chứng minh rằng:
a) Nếu a+b+c=0 thì P(x) có một nghiệm x=1
b) Nếu a-b+c=0 thì P(x) có một nghiệm x=-1
Xét đa thức P(x) = ax^2 +bx + c. Chứng minh rằng:
a) Nếu a+b+c=0 thì P(x) có một nghiệm là x =1
b) Nếu a-b+c=0 thì P(x) có một nghiệm là x=-1
Chứng minh rằng nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 thì ay-bx=0
Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)
Vậy ta có điều phải chứng minh.
Chứng minh rằng nếu b-2c>=2 thì một trong hai phương trình sau đây có nghiệm :
x^2 + bx +1= 0 ; x^2 + x +c=0
\(\Delta_1=b^2-4;\Delta_2=1-4c;\)
Do đó: \(\Delta_1+\Delta_2=b^2-3c-4c\)
Mặt khác, ta có: \(b-2c\ge2\Leftrightarrow-2c\ge2-b\Leftrightarrow-4c\ge4-2b\Leftrightarrow-3-4c\ge1-2b\)
\(\Leftrightarrow b^2-3-4c\ge b^2-2b+1=\left(b-1\right)^2\ge0\)
Hay \(\Delta_1+\Delta_2\ge0\)
Suy ra ít nhất một trong hai biệt thức \(\Delta_1,\Delta_2\)phải có ít nhất một biệt thức không âm.
Hay một trong hai phương trình đã cho có nghiệm.
Giải giúp mình!
xét đa thức: P(x) = ax^2 + bx+c. Chứng minh rằng:
a) Nếu a+b+c+d=0 thì P(x) có một nghiệm là x=1
b)Nếu a-b+c=0 thì P(x) có một nghiệm là x=-1