Những câu hỏi liên quan
DN
Xem chi tiết
PJ
Xem chi tiết
ST
25 tháng 2 2017 lúc 17:27

a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}

Ta có: n - 2 = 1 => n = 3

          n - 2 = -1 => n = 1

          n - 2 = 5 => n = 7

          n - 2 = -5 => n = -3

Vậy n = {3;1;7;-3}

b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất

=> n - 2 đạt giá trị lớn nhất  (n - 2 \(\ne\)0 ; n - 2 < 0)

=> n - 2 = -1 => n = 1

Vậy để A có giá trị nhỏ nhất thì n = 1

c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất

=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)

=> n - 2 = 1 => n = 3

Vậy để A đạt giá trị lớn nhất thì n = 3

Bình luận (0)
HV
Xem chi tiết
DT
Xem chi tiết
NK
16 tháng 3 2017 lúc 12:53

kiểm tra đề đi bạn

rồi có chi tớ giải cho

Bình luận (0)
TM
Xem chi tiết
NT
31 tháng 7 2023 lúc 1:21

\(A=\dfrac{6n-1}{3n-2}\)

\(\Rightarrow A=\dfrac{6n-4+3}{3n-2}\)

\(\Rightarrow A=\dfrac{2\left(3n-2\right)+3}{3n-2}\)

\(\Rightarrow A=2+\dfrac{3}{3n-2}\ge2+\dfrac{3}{3.1-2}=5\left(n=1\in Z\right)\)

\(\Rightarrow Min\left(A\right)=5\left(n=1\right)\)

Bình luận (0)
TB
30 tháng 7 2023 lúc 23:09

mkmhkkkkkkkkkkkkkk

Bình luận (0)
TB
30 tháng 7 2023 lúc 23:09

hơi khó

 

Bình luận (0)
LD
Xem chi tiết
TS
Xem chi tiết
ND
23 tháng 2 2018 lúc 16:18

A=\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}\)=\(\frac{6n+4}{3n+2}-\frac{5}{3n+2}\)=  2-\(\frac{5}{3n+2}\)

Để A đạt GTNN thì \(\frac{5}{3n+2}\)đạt GTLN \(\Leftrightarrow\)3n+2 <0 và đạt GTLN

=>3n+2 =-1 => 3n=-3=>n=-1khi đó A= 7

Vậy Amin=7 khi x=-1

Bình luận (0)
PQ
23 tháng 2 2018 lúc 19:06

Ta có : 

\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\) đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN suy ra \(3n+2>0\)  và đạt GTNN 

\(\Rightarrow\)\(3n+2=1\)

\(\Leftrightarrow\)\(3n=-1\)

\(\Leftrightarrow\)\(n=\frac{-1}{3}\)

\(\Rightarrow\)\(A=\frac{6n-1}{3n+2}=\frac{\frac{6.\left(-1\right)}{3}-1}{\frac{3.\left(-1\right)}{3}+2}=\frac{-2-1}{-1+2}=\frac{-3}{1}=-3\)

Vậy \(A_{min}=-3\) khi \(x=\frac{-1}{3}\)

Bình luận (0)
ND
8 tháng 3 2018 lúc 15:27

Phùng Minh Quân ơi x\(\in z\)

Bình luận (0)
TB
Xem chi tiết
AH
23 tháng 10 2024 lúc 20:59

Lời giải:

a. Với $n$ nguyên, để $A$ nguyên thì $6n-1\vdots 3n+2$

$\Rightarrow 2(3n+2)-5\vdots 3n+2$

$\Rightarrow 5\vdots 3n+2$

$\Rightarrow 3n+2\in \left\{\pm 1; \pm 5\right\}$

$\Rightarrow n\in \left\{-\frac{1}{3}; -1; 1; \frac{-7}{3}\right\}$

Do $n$ nguyên nên $n\in\left\{-1;1\right\}$

b.

\(A=\frac{2(3n+2)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để $A$ min thì $\frac{5}{3n+2}$ max

$\Rightarrow 3n+2$ phải là số nguyên dương bé nhất.

$3n+2>0\Rightarrow n> \frac{-2}{3}=-0,6666$

$\Rightarrow n$ nhỏ nhất là $0$

$\Rightarrow 3n+2$ nhỏ nhất bằng 2.

Khi đó: $A_{\min}=2-\frac{5}{3.0+2}=\frac{-1}{2}$

Bình luận (0)
NQ
Xem chi tiết
MT
11 tháng 8 2016 lúc 20:36

mk giải câu a thui nha

để \(\frac{6n-1}{3n+2}\)là số nguyên thì:

    (6n-1) sẽ phải chia hết cho(3n+2)

mà (3n+2) chja hết cho (3n+2)

=> 2(3n+2) cx sẽ chia hết cho (3n+2)

<=> (6n+4) chia hết cho (3n+2)

mà (6n-1) chia hết cho (3n+2)

=> [(6n+4)-(6n-1)] chja hết cho (3n+2)

      (6n+4-6n+1) chja hết cho 3n+2

           5 chia hết cho3n+2

=> 3n+2 \(\in\){1,5,-1,-5}

ta có bảng

3n+2

1   

-1-5

3n 

371-3
n1  

-1

vậy....
 

Bình luận (0)
DL
22 tháng 3 2016 lúc 20:42

bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
NL
11 tháng 8 2016 lúc 20:04

mình năm nay mới lên lớp 6

Bình luận (0)