Chứng minh rằng trong năm số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
1. Chứng minh rằng
a) (45+99+180) chia hết cho 2
b) (125+350+235) chia hết cho 5
c) (5124-504) chia hết cho 4
d) (9226-1435) chia hết cho 7
2.Chứng minh rằng
a) Trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
b) Trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
c) Trong bốn số tự nhiên liên tiếp luôn có 1 số chia hết cho 4
a. Ta có:
45 + 99 + 180 = 324
Vì: Số tận cùng của nó là số 4
=> 324 chia hết cho 2
Bài 1
chỉ cần tính ra kết quả là đc
Bài 2
Giả sử một số tự nhiên bất kì = n
=> 2 số tự nhiên liên tiếp là n và n+1
- Với n = 2k+1=>n+1 = 2k+2 chia hết 2
- Với n = 2k => n chia hết 2
Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
Chứng minh rằng trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5.
vì cứ 5 đơn vị lại có 1 số chia hết cho 5 nên 5 số liên tiếp sẽ có 1 số chia hết cho 5
Chứng tỏ rằng trong năm số tự nhiên liên tiếp luôn có một số chia hết cho 5
Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )
Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )
Nếu a = 5k thì suy ra a chia hết cho 5
Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5
Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5
Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5
Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5
=>trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( đpcm).
Nguyễn Văn Tân thik lik e đến thế cơ ak
ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh
tích cho em nhé OLM
chứng tỏ rằng trong năm số tự nhiên liên tiếp luôn có một số chia hết cho 5
ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh
Giải như bên dưới nha
Giải
Ta có :
5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minha) Chứng minh rằng trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
b) Chứng minh rằng trong 5 số tự nhiên bất kỳ bao giờ cũng chọn được 2 số có hiệu chia hết cho 4
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
Chứng minh rằng trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
ta có 5 số tự nhiên liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 . suy ra: (đpcm )
* nếu n chia hết cho 5 dư 1 =>n+4 chia hết cho 5 => đpcm
* nếu n chia hết cho 5 dư 2 =>n+3 chia hết cho 5 => đpcm
* nếu n chia hết cho 5 dư 3 =>n+2 ...................... => đpcm
* nếu n chia hết cho 5 dư 4 =>n+1....................... => đpcm
k cho mình nhế
Bài làm
Gọi 5 số liên tiếp bất kì là: n; n + 1; n + 2 ; n + 3; n + 4.
Nếu n : 5 dư 1 => n + 4 chia hết cho 5.
n : 5 dư 2 => n + 3 chia hết cho 5.
n : 5 dư 3 => n + 2 chia hết cho 5.
n : 5 dư 4 => n + 1 chia hết cho 5.
n : 5 mà không dư => n chia hết cho 5
=> 5 số tự nhiên liên tiếp n; n + 1; n + 2; n + 3; n + 4 chia hết cho 5
Vậy 5 số tự nhiên liên tiếp bất kì luôn có một số chia hết cho 5. ( đpcm )
~ Chắc zậy ~
# Chúc bạn học tốt #
Gọi 5 số tự nhiên liên tiếp là : n ; n + 1; n + 2 ; n + 3 ; n + 4 (\(n\inℕ\)
Ta có : n + (n + 1) + (n + 2) + (n + 3) + (n + 4)
= n + n + 1 + n + 2 + n + 3 + n + 4
= 5n + 10
= 5.(n + 2) \(⋮\)5
=> n + (n + 1) + (n + 2) + (n + 3) + (n + 4) \(⋮\)5 (\(n\inℕ\))
=> Trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5 (đpcm)
Chứng minh rằng :
a. Trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3.
b. Trong 4 số tự nhiên liên tiếp luôn có một số chia hết cho 4.
c. Nêu kết luận tổng quát từ câu a và câu b
d. Chứng minh rằng : tích của hai số chẵn liên tiếp chia hết cho 8
Bài 1 Chứng minh rằng 17^5 + 24^4 - 13^21 chia hết cho 10
Bài 2 Cho A bằng { (1 + 2+ 3 + .. . + n ) - 7 } . Hỏi A có chia hết cho 10 không ?
Bài 3 Tìm chữ số tận cùng của 5^ n (n>1)
Bài 4 Chứng minh rằng
a Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
b Trong 4 số tự nhiên liên tiếp có một số chia hết cho 4
c Trong năm số tự nhiên liên tiếp có một số chia hết cho 5
1/Chứng minh rằng : tích 5 số tự nhiên liên tiếp luôn luôn chia hết cho 30.
2/Tìm số bị chia & số chia, biết rằng khi + số bị chia với 10 và nhân số chia với 10 thì thương không thay đổi.
3/Cho 10 số tự nhiên bất kỳ: a1, a2,....a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10