tìm x,y biết: 91x - 4xy = 84
Tìm số hữu tỉ x,y biết
x+ y = 4xy = x : y
Tìm x,y,z nguyên biết x²-4xy+5y²+20x-22y+12=0
tìm x,y nguyên biết 5z^2-y^2+4xy-9=0
. Tìm x, y biết 48/84 = 24/x = y/21
|
Tìm x, y biết 3x-2y= 2x+3y=4xy
tìm x,y thuộc Q, biết :
3x-2y=2n+3y=4xy
Tìm x; y nguyên biết x^2-4xy+5y^2=169
Tìm x,y thuộc Z biết x^2+3y^2-4xy+4y-3=0
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)=-1\\ \Leftrightarrow\left(x-2y\right)^2-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1=\left(-1\right)\cdot1\)
\(TH_1:\left\{{}\begin{matrix}x-3y+2=1\\x-y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x-3y+2=-1\\x-y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-3\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)\in\left\{\left(2;1\right);\left(6;3\right)\right\}\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)+1=0\\ \Leftrightarrow\left(x-2y^2\right)-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-y-2\in Z\\x-3y+2\in Z\\x-y-2,x-3y+2\inƯ\left(-1\right)=\left\{-1;1\right\}\end{matrix}\right.\)
Ta có bảng:
\(x-3y+2\) | \(-1\) | \(1\) |
\(x-y-2\) | \(1\) | \(-1\) |
\(x\) | 6 | 2 |
\(y\) | 3 | 1 |
Tìm giá trị của đa thức biết x - y = 3
x^3 - y^3 - 4xy + y^2 - 35 - 3xy(x -y) + 2x^2