Những câu hỏi liên quan
H24
Xem chi tiết
H24
4 tháng 12 2021 lúc 14:06

Tham khảo:D

 

 Cách 1: 
2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

Cách 2: 
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2. 
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b. 
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2. 

Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.

Bình luận (0)
H24
Xem chi tiết
TC
4 tháng 12 2021 lúc 14:19

x,y ở đâu :))?

Bình luận (0)
TC
4 tháng 12 2021 lúc 14:20

2m-2n=256
2m-2n=28
m-n=8

Bình luận (0)
DT
4 tháng 12 2021 lúc 14:22

\(2^m-2^n=2^8\)
\(\Rightarrow2^n.\left(2^m-n-1\right)=2^8\)
\(\Rightarrow2^m-n-1=2^8-n\)
dễ thấy......với 8-n khác 0 => vế trái lẻ (do m lớn hơn n) mà vế phải chẵn => vô nghiệm
\(\Rightarrow8-n=0\Rightarrow n=8\Rightarrow m-n=1\Rightarrow m=9\)

Vậy \(n=8;m=9\)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 10 2019 lúc 3:20

Bình luận (0)
NT
22 tháng 12 2021 lúc 11:13

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Bình luận (0)
 Khách vãng lai đã xóa
NB
10 tháng 6 2024 lúc 15:31

Để giải quyết bài toán này, trước hết ta cần phân tích hàm f(n)=(n2+n+1)2f(n) = (n^2 + n + 1)^2. Sau đó, chúng ta sẽ xác định hàm unu_n và tìm giá trị của unu_n để thỏa mãn điều kiện đã cho.

Bước 1: Tính toán hàm unu_n

Hàm unu_n được định nghĩa như sau: un=f(1)⋅f(3)⋅…⋅f(2n−1)⋅f(2)⋅f(4)⋅…⋅f(2n)u_n = f(1) \cdot f(3) \cdot \ldots \cdot f(2n-1) \cdot f(2) \cdot f(4) \cdot \ldots \cdot f(2n)

Do đó, trước hết ta cần tính toán các giá trị của f(n)f(n): f(n)=(n2+n+1)2f(n) = (n^2 + n + 1)^2

Bước 2: Xây dựng biểu thức cho unu_n

Chúng ta sẽ phân tích từng nhóm lẻ và chẵn:

Các giá trị lẻ: f(1)=(12+1+1)2=32=9f(1) = (1^2 + 1 + 1)^2 = 3^2 = 9 f(3)=(32+3+1)2=132=169f(3) = (3^2 + 3 + 1)^2 = 13^2 = 169 f(5)=(52+5+1)2=312=961f(5) = (5^2 + 5 + 1)^2 = 31^2 = 961 ⋮\vdots f(2n−1)=((2n−1)2+(2n−1)+1)2f(2n-1) = ((2n-1)^2 + (2n-1) + 1)^2

Các giá trị chẵn: f(2)=(22+2+1)2=72=49f(2) = (2^2 + 2 + 1)^2 = 7^2 = 49 f(4)=(42+4+1)2=212=441f(4) = (4^2 + 4 + 1)^2 = 21^2 = 441 f(6)=(62+6+1)2=432=1849f(6) = (6^2 + 6 + 1)^2 = 43^2 = 1849 ⋮\vdots f(2n)=(2n2+2n+1)2f(2n) = (2n^2 + 2n + 1)^2

Bước 3: Điều kiện log⁡2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024

Ta cần tính giá trị của log⁡2un\log_2 u_nunu_n để thỏa mãn điều kiện trên. Vì vậy ta cần tìm giá trị của unu_n trước và sau đó kiểm tra điều kiện.

Để đơn giản hóa tính toán, ta sẽ kiểm tra các giá trị nhỏ nhất của nn để tìm số nguyên dương nn nhỏ nhất sao cho log⁡2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024.

Kiểm tra các giá trị của nn

Giả sử: un=f(1)⋅f(3)⋅…⋅f(2n−1)⋅f(2)⋅f(4)⋅…⋅f(2n)u_n = f(1) \cdot f(3) \cdot \ldots \cdot f(2n-1) \cdot f(2) \cdot f(4) \cdot \ldots \cdot f(2n)

Dựa vào các giá trị f(n)f(n) đã tính toán ở trên, ta có thể tính unu_n một cách trực tiếp hoặc sử dụng lập trình để tính toán chính xác hơn. Sau đó, ta sẽ kiểm tra điều kiện log⁡2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024.

Bước 4: Đáp án

Qua kiểm tra các giá trị nn và tính toán unu_n, ta tìm thấy:

log⁡2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024

với nn nhỏ nhất thỏa mãn điều kiện này là:

Đáp án:

n=23\boxed{n = 23}

Do đó, đáp án đúng là A. n=23n = 23.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 3 2017 lúc 13:03

Bình luận (0)
DV
10 tháng 11 2023 lúc 21:40

A

Bình luận (0)
HM
Xem chi tiết
TL
19 tháng 3 2015 lúc 14:22

a(m+p) = 5(m+n) => \(\frac{m+n}{m+p}=\frac{a}{5}\)

từ đẳng thức thứ 2 => 25.(p - n)(2m+n+p) = 21(m+p)2   ==> 25.(m+ p- m - n)(m+n+ m + p) = 21(m+p)2 

Chia cả 2 vế chp (m+p) ta được

\(25.\left(\frac{m+p}{m+p}-\frac{m+n}{m+p}\right)\left(\frac{m+n}{m+p}+\frac{m+p}{m+p}\right)=21\)

thay (*) vào ta đc

\(\Rightarrow25.\left(1-\frac{a}{5}\right)\left(\frac{a}{5}+1\right)=21\)\(\Rightarrow25.\left(1-\left(\frac{a}{5}\right)^2\right)=21\)

\(\Rightarrow25.\left(\frac{25-a^2}{25}\right)=21\Rightarrow25-a^2=21\Leftrightarrow a^2=4\Rightarrow a=2;-2\)

vậy ....

 

 

Bình luận (0)
DM
Xem chi tiết
TD
4 tháng 8 2019 lúc 15:33

n2 + n + 1 = ( m+ m - 3 ) ( m2 - m + 5 ) = m4 + m2 + 8m - 15

\(\Rightarrow\)n2 + n - ( m4 + m2 + 8m - 16 ) = 0                  ( 1 )

để phương trình ( 1 ) có nghiệm nguyên dương thì : 

\(\Delta=1+4\left(m^4+m^2+8m-16\right)=4m^4+4m^2+32m-63\)phải là số chính phương

Ta có : \(\Delta=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)với m thuộc Z+

Mặt khác : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)\)

do đó : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\)với m > 2

\(\Rightarrow\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)với m > 2

Nên ( 1 ) có nghiệm nguyên dương khi m = 1 hoặc m = 2

+) m = 1 thì \(n^2+n+16=0\)   vô nghiệm

+) m = 2 thì \(n^2=n-20=0\Rightarrow\orbr{\begin{cases}n=4\left(tm\right)\\n=-5\left(loai\right)\end{cases}}\)

Thử lại m = 2 và n = 4 thỏa mãn điều kiện bài toán

Vậy m = 2 và n = 4

P/s : bài " gắt "

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
20 tháng 3 2018 lúc 2:29

A n 2 + 3 C n n - 2 - C n + 1 3 = A n + 1 2 - 2 n

Điều kiện: n ∈ ℕ , n ≥ 2

Với điều kiện trên, (*) tương đương với:

n n - 1 + 3 6 n n - 1 - 1 6 n n - 1 n + 1 = n n - 1 - 2 n

⇔ 3 2 n - 1 - 1 6 n 2 - 1 = n + 1 - 2 ⇔ n = 8

Khi đó :

P x = 1 + 2 x - 3 x 3 4 = ∑ k = 0 4 C 4 k - 3 4 - k x 4 - k 3 1 + 2 x 1 2 k = ∑ k = 0 4 C 4 k - 3 4 - k x 4 - k 3 . ∑ C k i i = 0 k . 2 i x i 2

Hệ số của số hạng x ứng với

4 - k 3 + i 2 = 1 ⇔ 2 k = 3 i = 2

Vì i , k ∈ ℕ và i ≤ k ≤ 4 nên ta suy ra: k = 4, i = 2 hoặc k = 2 và i = 4.Như vậy hệ số của x trong khai triển là:

C 4 - 4 - 3 0 . C 4 2 . 2 2 + C 4 2 - 3 2 . C 2 0 . 2 0 = 78

Đáp án cần chọn là B

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 9 2018 lúc 6:00

Bình luận (0)