Chứng minh rằng có thể tìm được 1 đoạn(1 dãy số ) gom 2015 số ko có 1 số nguyên tố nào
Chứng minh rằng có thể tìm được 1 dãy số gồm n số tự nhiên liên tiếp (n>1) mà không có số nào là số nguyên tố?
Xét dãy các số: \(\left(n+1\right)!+2,\left(n+1\right)!+3,...,\left(n+1\right)!+n+1\).
Có \(\left(n+1\right)!+k⋮k\)mà \(\left(n+1\right)!+k>k\)nên số đó là hợp số.
Vậy dãy số trên gồm toàn hợp số.
chứng minh rằng có thể tìm một dãy số gồm n số tự nhiênn liên tiếp(n>1) không có số tự nhiên nào là số nguyên tố
trong dãy số tự nhiên có thể tìm được 2015 số tự nhiên liên tiếp mà trong đó khong có 1 số nào là số nguyên tố hay không
Có. Nếu lấy A = 2.3.4....2015.2016.2017, thì A chia hết cho 2, 3, ..., 2015, 2016, 2017.
Và dãy 2015 số bắt đầu từ A+2 đều là hợp số:
A + 2; A + 3; ....; A + 2015; A + 2016; A + 2017
Bởi vì A + 2 chia hết cho 2
A + 3 chia hết cho 3
.....
A + 2015 chia hết cho 2015
A + 2016 chia hết cho 2016
A + 2017 chia hết cho 2017
Chắc là không em à ! Đến lớp cô giảng cho !
a ko có số tự nhiên lớn nhất
b co số tự nhiên nhỏ nhất đó là 0
2
a 1202;1200;1198
b a+4;a+2;a
Chứng minh rằng số sau ko phải số nguyên tố : A = 2^2015 - 1
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿
201510-1 và 201510+1 ko thể đồng thời là số nguyên tố . hãy chứng minh
A= 201510-1 =.....5 - 1 = ......4 là hợp số
B= 201510 + 1 = ......5 + 1 = ........6 là hợp số
Cả hai đều là hợp số , không phải là số nguyên tố
B1:chứng minh rằng tổng các chữ số của bình phương bất kì số tự nhiên nào cũng không thể bằng số nguyên tố 977
B2:tìm tất cả các số tụ nhiên n sao cho trong dãy n+1,n+2,...,n+10 có nhiều số nguyê tố nhất
HELP mình vs chiều nay đi học rồi
B2 : n=1
vì nếu lớn hơn 1 thì có 5soos chia hết cho 2 và ít nhất 1 số chia hết cho3 là số lẻ
nếu n=0 thì có 4soos nguyên tố
nhắn đúng cho mình nhé
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.