Những câu hỏi liên quan
AD
Xem chi tiết
VN
Xem chi tiết
DT
Xem chi tiết
H24
19 tháng 2 2021 lúc 9:14

2011||x2−y|−8|+y2−1=12011||x2−y|−8|+y2−1=1

⇔||x2−y|−8|+y2−1=0⇔||x2−y|−8|+y2−1=0

⇔||x2−y|−8|+y2=1⇔||x2−y|−8|+y2=1

Do x;y∈Z⇒||x2−y|−8|∈N;y2∈Nx;y∈Z⇒||x2−y|−8|∈N;y2∈N

Do y∈Z⇒y2y∈Z⇒y2 là số chính phương

Mà 1=0+11=0+1 nên ta có 22 trường hợp xảy ra

-Trường hợp 1: {||x2−y|−8|=1(1)y2=0(2){||x2−y|−8|=1(1)y2=0(2) 

(2)⇔y=0(2)⇔y=0

Thay yy vào (1)(1) ta được: 

||x2−0|−8|=1⇔||x2|−8|=1||x2−0|−8|=1⇔||x2|−8|=1

⇔|x2−8|=1⇔[x2−8=1x2−8=−1⇔|x2−8|=1⇔[x2−8=1x2−8=−1

⇔[x2=9x2=7⇔[x=±3x=±√7⇔[x2=9x2=7⇔[x=±3x=±7

Mà x∈Z⇒x=±3x∈Z⇒x=±3

-Trường hợp 2:

{||x2−y|−8|=0(3)y2=1(4)⇔{|x2−y|−8=0(3)y=±1{||x2−y|−8|=0(3)y2=1(4)⇔{|x2−y|−8=0(3)y=±1 

+Nếu y=1,y=1, thay vào (3)(3) ta được:

|x2−1|−8=0⇔|x2−1|=8|x2−1|−8=0⇔|x2−1|=8

⇔[x2−1=8x2−1=−8⇔[x2=9x2=−7(loại)⇔[x2−1=8x2−1=−8⇔[x2=9x2=−7(loại)

⇔x2=9⇔x=±3⇔x2=9⇔x=±3 (thỏa mãn)

+Nếu y=−1,y=−1, thay vào (3)(3) ta được:

| x2+1 | = 0⇔x2+1=8⇔x2=7|x2+1|−8=0⇔x2+1=8⇔x2=7

⇔x=±√7⇔x=±7 (không thỏa mãn)

Bình luận (0)
 Khách vãng lai đã xóa
VM
Xem chi tiết
AH
22 tháng 10 2024 lúc 22:37

Lời giải:

$(x+1)^2+(y+1)^2+(x-y)^2=2$
Vì $(y+1)^2, (x-y)^2\geq 0$ nên:

$(x+1)^2=2-(y+1)^2-(x-y)^2\leq 2$

Mà $(x+1)^2$ là scp nên $(x+1)^2=0$ hoặc $(x+1)^2=1$

TH1: $(x+1)^2=0\Rightarrow x=-1$

Khi đó: $(y+1)^2+(-1-y)^2=2$

$\Rightarrow 2(y+1)^2=2\Rightarrow (y+1)^2=1$

$\Rightarrow y+1=1$ hoặc $y+1=-1$

$\Rightarrow y=0$ hoặc $y=-2$ (thỏa mãn) 

TH2: $(x+1)^2=1\Rightarrow x+1=1$ hoặc $x+1=-1$

$\Rightarrow x=0$ hoặc $x=-2$
Nếu $x=0$ thì:

$1+(y+1)^2+(-y)^2=2$

$\Rightarrow 2y^2+2y=0$

$\Rightarrow 2y(y+1)=0\Rightarrow y=0$ hoặc $y=-1$

Nếu $x=-2$ thì:

$1+(y+1)^2+(-2-y)^2=2$

$\Rightarrow 2y^2+6y+4=0$

$\Rightarrow y^2+3y+2=0$

$\Rightarrow (y+1)(y+2)=0\Rightarrow y=-1$ hoặc $y=-2$

Vậy $(x,y)=(-1,0), (-1,-2), (0,0), (0,-1), (-2, -1), (-2,-2)$

Bình luận (0)
VB
Xem chi tiết
VM
Xem chi tiết
NP
31 tháng 3 2015 lúc 20:35

x(y+2)+y = 1

x(y+2)+(y+2) = 1+2

(y+2)(x+1) = 3

ta co bang

     y+ 2

  1            -1

       3

-3

     X + 1

 3               -3

       1

-1

        y

 -1             -3

1

-5

         x

 2             -4

0

-2

 

Bình luận (0)
VC
Xem chi tiết
LU
Xem chi tiết
AH
27 tháng 11 2023 lúc 18:35

Lời giải:

Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:

$ab^2=b-a-1$

$\Leftrightarrow ab^2+a+1-b=0$

$\Leftrightarrow a(b^2+1)+(1-b)=0$

$\Leftrightarrow a=\frac{b-1}{b^2+1}$

Để $a$ nguyên thì $b-1\vdots b^2+1$

$\Rightarrow b^2-b\vdots b^2+1$

$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$

$\Rightarrow b+1\vdots b^2+1$

Kết hợp với $b-1\vdots b^2+1$

$\Rightarrow (b+1)-(b-1)\vdots b^2+1$

$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm) 

Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$

Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)

Với $b=-1$ thì $a=-1$

Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)

Bình luận (0)
NM
Xem chi tiết