Những câu hỏi liên quan
PD
Xem chi tiết
PC
Xem chi tiết
NM
4 tháng 4 2017 lúc 22:50

Gọi d là ước nguyên tố chung của 7n+6 và 6n+7

=>7n+6 ; d

6n+7 :d  ( mình viết dấu : thay cho dấu chia hết nha)

=>6(7n+6):d

7(6n+7):d

=>42n+36:d

42n+49:d

=>(42n+49)-(42n+36):d

=>13 :d

=>d=13

Để phân số trên còn rút gọn được nữa thì 7n+6 :13

=>7n+6-13 : 13

=>7n-7:13

=>7(n-1):13

Vì (7;13)=1 nên n-1:13

=>n=13k+1 ( k\(\in\) Z)

b) Để A tối giản thì 7n+6 ko chia hết cho 13

=> \(n\ne13k+1\left(k\in Z\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 3 2019 lúc 6:19

Bình luận (0)
LQ
Xem chi tiết
BH
7 tháng 3 2018 lúc 15:22

a/ Đặt A=6n2+n-7

=> 3A= 3(6n2-4n+5n-7)=3(6n2-4n)+15n-21 = 6n(3n-2)+15n-10-11=6n(3n-2)+5(3n-2)-11=(3n-2)(6n+5)-11

Nhận thấy: (3n-2)(6n+5) chia hết cho 3n-2 với mọi n

=> Để A nguyên (hay 3A nguyên) thì 11 phải chia hết cho 3n-2 => 3n-2=(-11,-1,1,11)

3n-2-11-1 1 11
n-31/3(loại) 1 13/3(loại)
 3A -44 Loại 0Loại
 A -44/3(loại)Loại 0 Loại

Đáp số: n=1

Bình luận (0)
NT
Xem chi tiết
DA
Xem chi tiết
UN
18 tháng 8 2021 lúc 21:00

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

Bình luận (0)
 Khách vãng lai đã xóa
NQ
18 tháng 8 2021 lúc 21:08

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

Bình luận (0)
 Khách vãng lai đã xóa
DA
Xem chi tiết
NQ
19 tháng 8 2021 lúc 10:13

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

Bình luận (0)
 Khách vãng lai đã xóa
DA
Xem chi tiết
KN
18 tháng 8 2021 lúc 22:20

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên

=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }

=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }

b. thêm điều kiện n\(\in\)Z

Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n ) 

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
NM
18 tháng 3 2017 lúc 19:56

giá trị lớn nhất của A là 5,5

Bình luận (0)
CC
18 tháng 3 2017 lúc 20:37

mk đang cần cách giả nhé

Bình luận (0)